cf D. On Sum of Fractions
http://codeforces.com/problemset/problem/397/D
题意:v(n) 表示小于等于n的最大素数,u(n)表示比n的大的第一个素数,然后求出;
思路:把分数拆分成两个分数相减,你就会发现规律,等于1/2-1/3+1/3-1/5.。。。。。。。,找出v(n)和u(n),答案就出来了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std; int t;
ll n; ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
} int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
ll l,r;
bool flag=true;
for(int i=; i*i<=n; i++)
{
if(n%i==)
{
flag=false;
break;
}
}
if(flag)
{
r=n+;
while(r)
{
int f1=;
for(int i=; i*i<=r; i++)
{
if(r%i==)
{
f1=;
break;
}
}
if(f1)
{
break;
}
r++;
}
ll cc=*n*r;
ll xx=n*r-*(r-);
ll g=gcd(xx,cc);
printf("%lld/%lld\n",xx/g,cc/g);
}
else
{
l=n-;
while(l)
{
int f2=;
for(int i=; i*i<=l; i++)
{
if(l%i==)
{
f2=;
break;
}
}
if(f2)
{
break;
}
l--;
}
r=n+;
while(r)
{
int f3=;
for(int i=; i*i<=r; i++)
{
if(r%i==)
{
f3=;
break;
}
}
if(f3)
{
break;
}
r++; }
ll c1=*l*r;
ll x1=l*r-*(l+r-n-);
ll gg=gcd(x1,c1);
printf("%lld/%lld\n",x1/gg,c1/gg);
}
}
return ;
}
cf D. On Sum of Fractions的更多相关文章
- Codeforces Round #232 (Div. 2) D. On Sum of Fractions
D. On Sum of Fractions Let's assume that v(n) is the largest prime number, that does not exceed n; u ...
- Codeforces 396B On Sum of Fractions 数论
题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...
- CF 964C Alternating Sum
给定两正整数 $a, b$ .给定序列 $s_0, s_1, \dots, s_n,s_i$ 等于 $1$ 或 $-1$,并且已知 $s$ 是周期为 $k$ 的序列并且 $k\mid (n+1)$,输 ...
- CF 577B Modulo Sum
题意:给一个长度为n的正整数序列,问能不能找到一个不连续的子序列的和可以被m整除. 解法:抽屉原理+dp.首先当m<n时一定是有答案的,因为根据抽屉原理,当得到这个序列的n个前缀和%m时,一定会 ...
- CF 622F The Sum of the k-th Powers——拉格朗日插值
题目:http://codeforces.com/problemset/problem/622/F 发现 sigma(i=1~n) i 是一个二次的多项式( (1+n)*n/2 ),sigma(i=1 ...
- CF 914 G Sum the Fibonacci —— 子集卷积,FWT
题目:http://codeforces.com/contest/914/problem/G 其实就是把各种都用子集卷积和FWT卷起来算即可: 注意乘 Fibonacci 数组的位置: 子集卷积时不能 ...
- 数学题--On Sum of Fractions
题目链接 题目意思: 定义v(n)是不超过n的最大素数, u(n)是大于n的最小素数. 以分数形式"p/q"输出 sigma(i = 2 to n) (1 / (v(i)*u(i) ...
- cf396B On Sum of Fractions
Let's assume that v(n) is the largest prime number, that does not exceed n; u(n) is the smallest pri ...
- Codeforces Round #232 (Div. 2) On Sum of Fractions
Let's assume that v(n) is the largest prime number, that does not exceed n; u(n) is the smallest pri ...
随机推荐
- [转] React同构思想
React比较吸引我的地方在于其客户端-服务端同构特性,服务端-客户端可复用组件,本文来简单介绍下这一架构思想. 出于篇幅原因,本文不会介绍React基础,所以,如果你还不清楚React的state/ ...
- ArrayBlockingQueue 源码阅读 问题(一)
今天阅读java.util.concurrent 中 ArrayBlockingQueue 的源码,发现其中有很多下面这行代码 final ReentrantLock lock = this.lock ...
- 自定义HtmlHelper方法
原文:http://www.cnblogs.com/wenjiang/archive/2013/03/30/2990854.html HtmlHelper方法是ASP.NET MVC中非常强大的特性, ...
- 安装jdk后出现bash: ./java: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录
用sudo yum install glibc.i686命令安装好glibc之后问题就解决了
- (转)修改ECSHOP前后台的title中的ecshop
前台部分: 1:去掉头部TITLE部分的ECSHOP演示站 Powered by ecshop 前者在后台商店设置 - 商店标题修改 后者打开includes/lib_main.php $page_t ...
- zabbix 基于JMX的Tomcat监控
zabbix 基于JMX的Tomcat监控 一.环境 ubuntu14.04 LTS Java 1.7.0 zabbix 2.4.5 二.安装配置 1.安装JavaGateway 在ubuntu14. ...
- Android之获取本地图片并压缩方法
这两天在做项目时,做到上传图片功能一块时,碰到两个问题,一个是如何获取所选图片的路径,一个是如何压缩图片,在查了一些资料和看了别人写的后总算折腾出来了,在此记录一下. 首先既然要选择图片,我们就先要获 ...
- 本地tomcat访问mysql数据库
虽然以前经常听人说起过tomcat,但是今天头一次使用tomcat. 1.Tomcat的安装过程: 首先应该从Apache官方网站上下载是用于Windows的.zip压缩包. 下面是相应的下载链接: ...
- Scanner中next()和nextline()读取字符串方法和区别
在实现字符窗口的输入时,我个人更喜欢选择使用扫描器Scanner,它操作起来比较简单.在写作业的过程中,我发现用Scanner实现字符串的输入有两种方法,一种是next(),一种nextLine(), ...
- opencv安装及学习资料
第一次装时win7+VS2010+opencv3.0,结果不成功,原因解压出来的没有vc10,可能新版本不在支持vc的旧版本了.所以换了VS2013+opencv3.0,比较经典的安装时VS2010+ ...