PICK定理模板
S=I+O/2-1
S为多边形面积,I多边形内部的格点,O是多边形边上的格点
其中边上格点求法:
假设两个点A(x1,y1),B(x2,y2)
线段AB间格点个数为gcd(abs(x1-x2),abs(y1-y2))-1
特判x1-x2==0 或者 y1-y2==0,则覆盖的点数为 y2-y1 或 x2-x1
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5106 | Accepted: 2210 |
Description
A lattice point is an ordered pair (x, y) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).
Input
The input test file will contain multiple test cases. Each input test case consists of six integers x1, y1, x2, y2, x3, and y3, where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1, y1, x2, y2, x3, y3 ≤ 15000. The end-of-file is marked by a test case with x1 = y1 = x2 = y2 = x3 = y3 = 0 and should not be processed.
Output
For each input case, the program should print the number of internal lattice points on a single line.
Sample Input
0 0 1 0 0 1
0 0 5 0 0 5
0 0 0 0 0 0
Sample Output
0
6
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
} int main()
{
int sum,area;
int x1,Y1,x2,y2,x3,y3;
while(scanf("%d%d%d%d%d%d",&x1,&Y1,&x2,&y2,&x3,&y3),x1||Y1||x2||y2||x3||y3)
{
area=abs(x1*y2+x2*y3+x3*Y1-x1*y3-x2*Y1-x3*y2)/;
sum=gcd(abs(x1-x2),abs(Y1-y2))+gcd(abs(x2-x3),abs(y2-y3))+gcd(abs(x3-x1),abs(y3-Y1));
printf("%d\n",area+-sum/);
}
return ;
}
POJ 1265
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5112 | Accepted: 2291 |
Description
Input
Output
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std; int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int main()
{
__int64 ans;
int T,iCase=,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int sx=,sy=,tx,ty;
int on=,ans=;
while(n--)
{
scanf("%d%d",&tx,&ty);
int newx=sx+tx;
int newy=sy+ty;
ans+=sx*newy-sy*newx;
sx=newx;
sy=newy;
on+=gcd(abs(tx),abs(ty));
}
int in=(ans-on+)/;
printf("Scenario #%d:\n%d %d %.1f\n\n",iCase++,in,on,ans/2.0);
}
return ;
}
PICK定理模板的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- HDU 3775 Chain Code ——(Pick定理)
Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...
- 【POJ】2954 Triangle(pick定理)
http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...
- UVa 10088 - Trees on My Island (pick定理)
样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...
- Area(Pick定理POJ1256)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5429 Accepted: 2436 Description ...
- poj 2954 Triangle(Pick定理)
链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj1265Area(pick定理)
链接 Pick定理是说,在一个平面直角坐标系内,如果一个多边形的顶点全都在格点上,那么这个图形的面积恰好就等于边界上经过的格点数的一半加上内部所含格点数再减一. pick定理的一些应用 题意不好懂, ...
- pick定理:面积=内部整数点数+边上整数点数/2-1
//pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...
随机推荐
- a标签根据js返回值判断页面是否跳转
a标签再跳转之前先判断是否符合条件,符合可以跳转,不符合不可以跳转. 自己遇到的问题是:在js方法中根据条件就return结果,但是不行. 原因是:在js方法中return后不会结束整个js方法(ac ...
- CI获取ip的API
header("Content-type:text/html;charset=utf-8"); // p($this->input->ip_address()); // ...
- Openstack 目录
[一] OpenStack 基础环境 [二] OpenStack 认证服务 KeyStone [三] OpenStack 镜像服务 Glance [四] OpenStack 计算服务 Nova [五] ...
- VS2010 EntityFramework Database First
本文演练介绍如何使用实体框架进行 Database First 开发.通过 Database First,可以从现有数据库对模型进行反向工程处理.模型存储在一个 EDMX 文件(扩展名为 .edmx) ...
- docker+tomcat+java配置(ubuntu)
原创文章,转载请注明出处. 本文是基于ubuntu14.04搭建的dosker,tomcat配置是在docker容器外面(为了方便查看日志)使用的是docker启动挂载,该tomcat工程依赖于doc ...
- Normalize.css:优化重置CSS默认属性
Normalize.css:优化重置CSS默认属性 官方网站:http://necolas.github.io/normalize.css/ 项目仓库:https://github.com/necol ...
- MS SQL 维护小记
--查看当前连接的会话信息(进程号1--50是SQL Server系统内部用的) SELECT * FROM sys.dm_exec_sessions WHERE session_id >=51 ...
- Eat that Frog
Eat that Frog,中文翻译过来就是“吃掉那只青蛙”.不过这里并不是讨论怎么去吃青蛙,而是一种高效的方法. Eat that Frog是Brian Tracy写的一本书(推荐阅读).这是一个很 ...
- 通过LDF文件实现日志回滚将数据恢复(转)
该方法数据库恢复(www.db-recovery.com)思路 1. 创建数据TEST 2. 创建表TEMP_01 3. 在表TEMP_01中插入100条数据 4. 备份现有的数据库 5. 再次向表T ...
- Python subprocess模块学习总结
从Python 2.4开始,Python引入subprocess模块来管理子进程,以取代一些旧模块的方法:如 os.system.os.spawn*.os.popen*.popen2.*.comman ...