Tian Ji -- The Horse Racing

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11572    Accepted Submission(s): 3239

Problem Description
Here is a famous story in Chinese history.

"That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others."

"Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser."

"Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian."

"Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match."

"It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?"

Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching...

However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of matching problem.

 
Input
The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case.
 
Output
For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.
 
Sample Input
3 92 83 71 95 87 74 2 20 20 20 20 2 20 19 22 18 0
 
Sample Output
200 0 0
 
Source
 
Recommend
JGShining
 
 
贪心策略.
很容易被题目意思误导过去用最大权值匹配。
一、如果a的最慢速度大于b的最慢,则直接a的最慢与b的最慢比赛,赢一场;
二、如果a的最慢速度小于b的最慢,则用a的最慢浪费b的最快,输一场;
三、如果a的最慢速度等于b的最慢,则:
1.如果a的最快速度大于b的最快,则直接a的最快与b的最快进行比赛,赢一场;
2.如果a的最快速度小于b的最快,则用a的最慢浪费b的最快,输一场;
3.如果a的最快速度等于b的最快,即a与b的最慢与最快分别相等,则:
a.如果a的最慢速度小于b的最快,则用a的最慢浪费b的最快,输一场;
b.如果a的最慢速度等于b的最快,即a的最慢、a的最快、b的最慢、b的最快相等,
说明剩余未比赛的马速度全部相等,直接结束比赛。
 
贪心策略也容易理解。但是证明比较麻烦,不去理解了。
/*
HDU 1052
一、如果a的最慢速度大于b的最慢,则直接a的最慢与b的最慢比赛,赢一场;
二、如果a的最慢速度小于b的最慢,则用a的最慢浪费b的最快,输一场;
三、如果a的最慢速度等于b的最慢,则:
1.如果a的最快速度大于b的最快,则直接a的最快与b的最快进行比赛,赢一场;
2.如果a的最快速度小于b的最快,则用a的最慢浪费b的最快,输一场;
3.如果a的最快速度等于b的最快,即a与b的最慢与最快分别相等,则:
a.如果a的最慢速度小于b的最快,则用a的最慢浪费b的最快,输一场;
b.如果a的最慢速度等于b的最快,即a的最慢、a的最快、b的最慢、b的最快相等,
说明剩余未比赛的马速度全部相等,直接结束比赛。 */
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int MAXN=;
int a[MAXN],b[MAXN];
int main()
{
int n;
while(scanf("%d",&n)==&&n)
{
for(int i=;i<n;i++)scanf("%d",&a[i]);
for(int i=;i<n;i++)scanf("%d",&b[i]);
sort(a,a+n);
sort(b,b+n);
int al=,ah=n-;
int bl=,bh=n-;
int ans=;
while(al<=ah&&bl<=bh)
{
if(a[al]>b[bl])
{
ans+=;
al++;bl++;
}
else if(a[al]<b[bl])
{
ans-=;
al++;bh--;
}
else
{
if(a[ah]>b[bh])
{
ans+=;
ah--;bh--;
}
else if(a[ah]<b[bh])
{
ans-=;
al++;bh--;
}
else
{
if(a[al]<b[bh])
{
ans-=;
al++;bh--;
}
else if(a[al]==b[bh])//所有的都一样了
{
break;
}
}
}
}
printf("%d\n",ans);
}
return ;
}

HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)的更多相关文章

  1. HDU 1052 Tian Ji -- The Horse Racing(贪心)

    题目来源:1052 题目分析:题目说的权值匹配算法,有点误导作用,这道题实际是用贪心来做的. 主要就是规则的设定: 1.田忌最慢的马比国王最慢的马快,就赢一场 2.如果田忌最慢的马比国王最慢的马慢,就 ...

  2. HDU 1052 Tian Ji -- The Horse Racing【贪心在动态规划中的运用】

    算法分析: 这个问题很显然可以转化成一个二分图最佳匹配的问题.把田忌的马放左边,把齐王的马放右边.田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边:如果平局,则连一条权为0的边:如果输 ...

  3. Hdu 1052 Tian Ji -- The Horse Racing

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  4. hdu 1052 Tian Ji -- The Horse Racing (田忌赛马)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 Problem Description Here is a famous story in Ch ...

  6. hdu 1052 Tian Ji -- The Horse Racing【田忌赛马】

    题目 这道题主要是需要考虑到各种情况:先对马的速度进行排序,然后分情况考虑: 1.当田忌最慢的马比国王最慢的马快则赢一局 2.当田忌最快的马比国王最快的马快则赢一局 3.当田忌最快的马比国王最快的马慢 ...

  7. 杭州电 1052 Tian Ji -- The Horse Racing(贪婪)

    http://acm.hdu.edu.cn/showproblem.php? pid=1052 Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS ...

  8. hdoj 1052 Tian Ji -- The Horse Racing【田忌赛马】 【贪心】

    思路:先按从小到大排序, 然后从最快的開始比(如果i, j 是最慢的一端, flag1, flag2是最快的一端 ),田的最快的大于king的 则比較,如果等于然后推断,有三种情况: 一:大于则比較, ...

  9. POJ-2287.Tian Ji -- The Horse Racing (贪心)

    Tian Ji -- The Horse Racing Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 17662   Acc ...

随机推荐

  1. Redis的一点笔记

    Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 优势: 性能极高 – Redis能读的速度是110000次/s,写的速度是81000次/s . 丰富 ...

  2. perl基础-2

    函数参数 perl 函数参数为$$,$$$,$@ Perl 可以通过函数元型在编译期进行有限的参数类型检验. 如果你声明 sub mypush (+@)那么 mypush() 对参数的处理就同内置的 ...

  3. 编程之美-1.1 CPU 曲线

    解法二: import time def cpu_curve(): busyTime = 50 # 50 ms的效果比10ms的效果要好 idleTime = busyTime startTime = ...

  4. 暂时跳过的Leetcode题目

    963 最小面积矩形 II 有数学几何的味道,感觉这不是笔试面试的重点. 932 漂亮数组 构造题

  5. @ControllerAdvice 全局异常处理

    使用@ControllerAdvice 定义 全局异常处理 package com.app; import java.io.IOException; import java.io.PrintWrite ...

  6. JSP之Bean

    <jsp:useBean id=" " class" "/>创建JavaBean对象,并把创建的对象保存到域对象 比如:<jsp:useBea ...

  7. 设置iterm可配色

    设置终端和ls可配色 终端输入vim ~/.bash_profile 添加如下export #enables colorin the terminal bash shell export export ...

  8. 桥接模式下,主机能ping通虚拟机,虚拟机ping不通主机

    好像是防火墙阻止了什么东西而导致的无法ping通! 1.打开WIN7防火墙 2.选择高级设置 3.入站规则 4.找到配置文件类型为“公用”的“文件和打印共享(回显请求 – ICMPv4-In)”规则, ...

  9. python3笔记十三:python数据类型-Set集合

    一:学习内容 集合概念 集合创建 集合添加 集合插入 集合删除 集合访问 集合操作:并集.交集 二:集合概念 1.set:类似dict,是一组key的集合,不存储value 2.本质:无序和无重复元素 ...

  10. TP5 未定义变量:XXX

    TP5开发模式下报错级别非常高,哪怕变量未定义都直接抛出异常 应用公共函数文件  路径: application/common.php 在common.php文件写入 // 异常错误报错级别, err ...