题意 : 给出一个长度为 N 的序列,再给出一个 K 要求求出出现了至少 K 次的最长可重叠子串的长度

分析 : 后缀数组套路题,思路是二分长度再对于每一个长度进行判断,判断过程就是对于 Height 数组进行限定长度的分组策略,如果有哪一组的个数 ≥  k 则说明可行!

分组要考虑到一个事实,对于每一个后缀,与其相匹配能够产生最长的LCP长度的串肯定是在后缀数组中排名与其相邻。

一开始对分组的理解有误,所以想了一个错误做法 ==>

遍历一下 Height 将值 ≥ (当前二分长度) 的做一次贡献即 cnt++ ,若最后 cnt ≥ K 说明可行。当然这个肯定是炸了.......

下面说说我对于 Height 分组的理解吧,就看上面的图,如果当前 K == 2,那么第一组的含义是什么?换句话说就是为什么那么些个后缀要属于一组?可以看出第一组里面的 Height 值都不会小于 K ,实际的意义呢应当是第一组里面的有一个长度为 2 (不小于K)的共同前缀,即 “aa” ,那么是不是 “aa” 这个子串可重叠地出现了 cnt 次(cnt为第一组的后缀个数),可能你已经有点体会到分组的意义了!那么有没有可能有些前缀是 “aa” 但是没有被分进第一组呢?看见上面红字描述的事实么?根据上面的那个事实,而且 Height 的下标是根据排名有序的这个特点(有序的意思就是从小到大遍历 Height 实际传进去的下标就是排名!即 Height[i],i是表示第 i 名的后缀),我们就知道这样的事情不会发生,且分出来的组肯定的“连续的块”,即不会有这一组的元素在其他地方的可能性!

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
;

int sa[maxn], s[maxn], wa[maxn], Ws[maxn], wv[maxn], wb[maxn];
int Rank[maxn], height[maxn];

bool cmp(int r[], int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; }
void da(int r[], int sa[], int n, int m)
{
    int i, j, p, *x = wa, *y = wb;
    ; i < m; ++i) Ws[i] = ;
    ; i < n; ++i) Ws[x[i]=r[i]]++;
    ; i < m; ++i) Ws[i] += Ws[i-];
    ; i >= ; --i) sa[--Ws[x[i]]] = i;
    , p = ; p < n; j *= , m = p)
    {
        , i = n - j; i < n; ++i) y[p++] = i;
        ; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
        ; i < n; ++i) wv[i] = x[y[i]];
        ; i < m; ++i) Ws[i] = ;
        ; i < n; ++i) Ws[wv[i]]++;
        ; i < m; ++i) Ws[i] += Ws[i-];
        ; i >= ; --i) sa[--Ws[wv[i]]] = y[i];
        , x[sa[]] = , i = ; i < n; ++i)
            x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p- : p++;
    }
}
void calheight(int r[], int sa[], int n)
{
    ;
    ; i <= n; ++i) Rank[sa[i]] = i;
    ; i < n; height[Rank[i++]] = k)
        , j = sa[Rank[i]-]; r[i+k] == r[j+k]; k++);
}

bool IsOk(int len, int n, int aim)
{
    ;
//    for(int i=2; i<=n; i++){ //错误的!
//        if(height[i] >= len)
//            if(++cnt >= aim)
//                return true;
//    }return false;
    ; i<=n; i++){
        if(height[i] >= len){ if(++cnt >= aim) return true; }
        ;
    }return false;
}

int arr[maxn];
int main(void)
{
    int N, K;
    while(~scanf("%d %d", &N, &K)){

        ; i<N; i++)
            scanf("%d", &arr[i]);

        da(arr, sa, N+, );
        calheight(arr, sa, N);

        , R = N, ans = -;
        while(L <= R){
            );
            ;
            ;
        }
        ans==-? puts(") : printf("%d\n", ans);
    }
    ;
}

题目单个元素的值能达到 1e6 这么大,数组按这个开还勉强OK,但是这里还是要学学离散化的姿势!

离散化版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
;
struct st{
    int ord, val;
    bool operator < (const st &rhs) const {
        return this->val < rhs.val;
    };
}arr[maxn];

int sa[maxn], s[maxn], wa[maxn], Ws[maxn], wv[maxn], wb[maxn];
int Rank[maxn], height[maxn];

bool cmp(int r[], int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; }
void da(int r[], int sa[], int n, int m)
{
    int i, j, p, *x = wa, *y = wb;
    ; i < m; ++i) Ws[i] = ;
    ; i < n; ++i) Ws[x[i]=r[i]]++;
    ; i < m; ++i) Ws[i] += Ws[i-];
    ; i >= ; --i) sa[--Ws[x[i]]] = i;
    , p = ; p < n; j *= , m = p)
    {
        , i = n - j; i < n; ++i) y[p++] = i;
        ; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
        ; i < n; ++i) wv[i] = x[y[i]];
        ; i < m; ++i) Ws[i] = ;
        ; i < n; ++i) Ws[wv[i]]++;
        ; i < m; ++i) Ws[i] += Ws[i-];
        ; i >= ; --i) sa[--Ws[wv[i]]] = y[i];
        , x[sa[]] = , i = ; i < n; ++i)
            x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p- : p++;
    }
}
void calheight(int r[], int sa[], int n)
{
    ;
    ; i <= n; ++i) Rank[sa[i]] = i;
    ; i < n; height[Rank[i++]] = k)
        , j = sa[Rank[i]-]; r[i+k] == r[j+k]; k++);
}

bool IsOk(int len, int n, int aim)
{
    ;
    ; i<=n; i++){
        if(height[i] >= len)
            { if(++cnt >= aim) return true; }
        ;
    }return false;
}

int r[maxn];
int main(void)
{
    int N, K;
    while(~scanf("%d %d", &N, &K)){
        ; i<N; i++){
            scanf("%d", &arr[i].val);
            arr[i].ord = i;
        }

        ;
        sort(arr, arr+N);
        ; i<N; i++)
             && arr[i].val == arr[i-].val) r[arr[i].ord] = num; ///注意相等的时候如何处理
            else r[arr[i].ord] = ++num;

        da(r, sa, N+, num+);
        calheight(r, sa, N);

        , R = N, ans = -;
        while(L <= R){
            );
            ;
            ;
        }
        ans==-? puts(") : printf("%d\n", ans);
    }
    ;
}

POJ 3261 Milk Patterns ( 后缀数组 && 出现k次最长可重叠子串长度 )的更多相关文章

  1. POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次

    Milk Patterns   Description Farmer John has noticed that the quality of milk given by his cows varie ...

  2. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

  3. POJ 3261 Milk Patterns(后缀数组+单调队列)

    题意 找出出现k次的可重叠的最长子串的长度 题解 用后缀数组. 然后求出heigth数组. 跑单调队列就行了.找出每k个数中最小的数的最大值.就是个滑动窗口啊 (不知道为什么有人写二分,其实写啥都差不 ...

  4. poj 3261 Milk Patterns 后缀数组 + 二分

    题目链接 题目描述 给定一个字符串,求至少出现 \(k\) 次的最长重复子串,这 \(k\) 个子串可以重叠. 思路 二分 子串长度,据其将 \(h\) 数组 分组,判断是否存在一组其大小 \(\ge ...

  5. POJ3261 Milk Patterns —— 后缀数组 出现k次且可重叠的最长子串

    题目链接:https://vjudge.net/problem/POJ-3261 Milk Patterns Time Limit: 5000MS   Memory Limit: 65536K Tot ...

  6. POJ 3261 Milk Patterns (求可重叠的k次最长重复子串)+后缀数组模板

    Milk Patterns Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7586   Accepted: 3448 Cas ...

  7. POJ 3261 Milk Patterns 【后缀数组 最长可重叠子串】

    题目题目:http://poj.org/problem?id=3261 Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Subm ...

  8. poj3261 Milk Patterns 后缀数组求可重叠的k次最长重复子串

    题目链接:http://poj.org/problem?id=3261 思路: 后缀数组的很好的一道入门题目 先利用模板求出sa数组和height数组 然后二分答案(即对于可能出现的重复长度进行二分) ...

  9. poj 3261 Milk Patterns(后缀数组)(k次的最长重复子串)

    Milk Patterns Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7938   Accepted: 3598 Cas ...

随机推荐

  1. python3 基本数据类型_1

    不得已,要学习python3了,之前了解到py2与py3有很大不同,不过学起来才能感觉到,比如print. 不过,同样的代码,可以使用py3,py2执行,结果也相似,大家可以看看. 大概因为初学,还未 ...

  2. vue封装一些常用组件loading、switch、progress

    vue封装一些常用组件loading.switch.progress github文档https://github.com/zengjielin/vue-component-library loadi ...

  3. [MicroSoft]Introducing .NET 5

    Introducing .NET 5 Richard https://devblogs.microsoft.com/dotnet/introducing-net-5/ 将路线图 完整的给出来了. Ma ...

  4. 小油2018 win7旗舰版64位GHOST版的,安装telnet客户端时,提示:出现错误。并非所有的功能被成功更改。

    win7旗舰版64位GHOST版的,安装telnet客户端时,提示:出现错误.并非所有的功能被成功更改. 从安装成功的电脑上拷贝ghost版本缺少的文件,然后再安装telnet客户端,我已打包 链接: ...

  5. QT DBUS: Not connected to D-Bus server, 注意source /etc/profile

    运行环境:ARM 运行如下代码: QDBusConnection bus = QDBusConnection::sessionBus(); if(!bus.registerService(" ...

  6. C++中的const分析

    1,C 语言中的 const: 1,const 修饰的变量是只读的,本质还是变量: 1,C 语言中的 const 使变量具有只读属性: 2,const 只在编译期有用,在运行期无用: 3,const ...

  7. 什么场景下用redis而不用mysql?

    redis我们用作缓存,对查询速度要求比较高的应用场景比较适合.对有复杂逻辑关系的存储不适合. mysql是硬盘存储的,在高性能io要求的项目里不能满足需求,而redis所有数据存在内存里,因此要快得 ...

  8. 多线程测试工具groboutils的使用

    一直使用junit做为服务测试框架,感觉不错.最近有人反映在高并发的情况下,存在服务调不到.无奈再次打开单元测试模拟高并发的 情况,却发现junit不支持并发测试      引入groboutils ...

  9. 计算机系统结构总结_Memory Hierarchy and Memory Performance

    Textbook: <计算机组成与设计——硬件/软件接口>  HI <计算机体系结构——量化研究方法>       QR 这是youtube上一个非常好的memory syst ...

  10. sping data jpa 共享主键 OneTonOne 延时加载

    当我们使用spring boot创建项目时,系统默认使用的是如下parent. <parent> <groupId>org.springframework.boot</g ...