POJ 3261 Milk Patterns ( 后缀数组 && 出现k次最长可重叠子串长度 )
题意 : 给出一个长度为 N 的序列,再给出一个 K 要求求出出现了至少 K 次的最长可重叠子串的长度
分析 : 后缀数组套路题,思路是二分长度再对于每一个长度进行判断,判断过程就是对于 Height 数组进行限定长度的分组策略,如果有哪一组的个数 ≥ k 则说明可行!
分组要考虑到一个事实,对于每一个后缀,与其相匹配能够产生最长的LCP长度的串肯定是在后缀数组中排名与其相邻。
一开始对分组的理解有误,所以想了一个错误做法 ==>
遍历一下 Height 将值 ≥ (当前二分长度) 的做一次贡献即 cnt++ ,若最后 cnt ≥ K 说明可行。当然这个肯定是炸了.......
下面说说我对于 Height 分组的理解吧,就看上面的图,如果当前 K == 2,那么第一组的含义是什么?换句话说就是为什么那么些个后缀要属于一组?可以看出第一组里面的 Height 值都不会小于 K ,实际的意义呢应当是第一组里面的有一个长度为 2 (不小于K)的共同前缀,即 “aa” ,那么是不是 “aa” 这个子串可重叠地出现了 cnt 次(cnt为第一组的后缀个数),可能你已经有点体会到分组的意义了!那么有没有可能有些前缀是 “aa” 但是没有被分进第一组呢?看见上面红字描述的事实么?根据上面的那个事实,而且 Height 的下标是根据排名有序的这个特点(有序的意思就是从小到大遍历 Height 实际传进去的下标就是排名!即 Height[i],i是表示第 i 名的后缀),我们就知道这样的事情不会发生,且分出来的组肯定的“连续的块”,即不会有这一组的元素在其他地方的可能性!
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ; int sa[maxn], s[maxn], wa[maxn], Ws[maxn], wv[maxn], wb[maxn]; int Rank[maxn], height[maxn]; bool cmp(int r[], int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; } void da(int r[], int sa[], int n, int m) { int i, j, p, *x = wa, *y = wb; ; i < m; ++i) Ws[i] = ; ; i < n; ++i) Ws[x[i]=r[i]]++; ; i < m; ++i) Ws[i] += Ws[i-]; ; i >= ; --i) sa[--Ws[x[i]]] = i; , p = ; p < n; j *= , m = p) { , i = n - j; i < n; ++i) y[p++] = i; ; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j; ; i < n; ++i) wv[i] = x[y[i]]; ; i < m; ++i) Ws[i] = ; ; i < n; ++i) Ws[wv[i]]++; ; i < m; ++i) Ws[i] += Ws[i-]; ; i >= ; --i) sa[--Ws[wv[i]]] = y[i]; , x[sa[]] = , i = ; i < n; ++i) x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p- : p++; } } void calheight(int r[], int sa[], int n) { ; ; i <= n; ++i) Rank[sa[i]] = i; ; i < n; height[Rank[i++]] = k) , j = sa[Rank[i]-]; r[i+k] == r[j+k]; k++); } bool IsOk(int len, int n, int aim) { ; // for(int i=2; i<=n; i++){ //错误的! // if(height[i] >= len) // if(++cnt >= aim) // return true; // }return false; ; i<=n; i++){ if(height[i] >= len){ if(++cnt >= aim) return true; } ; }return false; } int arr[maxn]; int main(void) { int N, K; while(~scanf("%d %d", &N, &K)){ ; i<N; i++) scanf("%d", &arr[i]); da(arr, sa, N+, ); calheight(arr, sa, N); , R = N, ans = -; while(L <= R){ ); ; ; } ans==-? puts(") : printf("%d\n", ans); } ; }
题目单个元素的值能达到 1e6 这么大,数组按这个开还勉强OK,但是这里还是要学学离散化的姿势!
离散化版:
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ; struct st{ int ord, val; bool operator < (const st &rhs) const { return this->val < rhs.val; }; }arr[maxn]; int sa[maxn], s[maxn], wa[maxn], Ws[maxn], wv[maxn], wb[maxn]; int Rank[maxn], height[maxn]; bool cmp(int r[], int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; } void da(int r[], int sa[], int n, int m) { int i, j, p, *x = wa, *y = wb; ; i < m; ++i) Ws[i] = ; ; i < n; ++i) Ws[x[i]=r[i]]++; ; i < m; ++i) Ws[i] += Ws[i-]; ; i >= ; --i) sa[--Ws[x[i]]] = i; , p = ; p < n; j *= , m = p) { , i = n - j; i < n; ++i) y[p++] = i; ; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j; ; i < n; ++i) wv[i] = x[y[i]]; ; i < m; ++i) Ws[i] = ; ; i < n; ++i) Ws[wv[i]]++; ; i < m; ++i) Ws[i] += Ws[i-]; ; i >= ; --i) sa[--Ws[wv[i]]] = y[i]; , x[sa[]] = , i = ; i < n; ++i) x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p- : p++; } } void calheight(int r[], int sa[], int n) { ; ; i <= n; ++i) Rank[sa[i]] = i; ; i < n; height[Rank[i++]] = k) , j = sa[Rank[i]-]; r[i+k] == r[j+k]; k++); } bool IsOk(int len, int n, int aim) { ; ; i<=n; i++){ if(height[i] >= len) { if(++cnt >= aim) return true; } ; }return false; } int r[maxn]; int main(void) { int N, K; while(~scanf("%d %d", &N, &K)){ ; i<N; i++){ scanf("%d", &arr[i].val); arr[i].ord = i; } ; sort(arr, arr+N); ; i<N; i++) && arr[i].val == arr[i-].val) r[arr[i].ord] = num; ///注意相等的时候如何处理 else r[arr[i].ord] = ++num; da(r, sa, N+, num+); calheight(r, sa, N); , R = N, ans = -; while(L <= R){ ); ; ; } ans==-? puts(") : printf("%d\n", ans); } ; }
POJ 3261 Milk Patterns ( 后缀数组 && 出现k次最长可重叠子串长度 )的更多相关文章
- POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次
Milk Patterns Description Farmer John has noticed that the quality of milk given by his cows varie ...
- Poj 3261 Milk Patterns(后缀数组+二分答案)
Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...
- POJ 3261 Milk Patterns(后缀数组+单调队列)
题意 找出出现k次的可重叠的最长子串的长度 题解 用后缀数组. 然后求出heigth数组. 跑单调队列就行了.找出每k个数中最小的数的最大值.就是个滑动窗口啊 (不知道为什么有人写二分,其实写啥都差不 ...
- poj 3261 Milk Patterns 后缀数组 + 二分
题目链接 题目描述 给定一个字符串,求至少出现 \(k\) 次的最长重复子串,这 \(k\) 个子串可以重叠. 思路 二分 子串长度,据其将 \(h\) 数组 分组,判断是否存在一组其大小 \(\ge ...
- POJ3261 Milk Patterns —— 后缀数组 出现k次且可重叠的最长子串
题目链接:https://vjudge.net/problem/POJ-3261 Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Tot ...
- POJ 3261 Milk Patterns (求可重叠的k次最长重复子串)+后缀数组模板
Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7586 Accepted: 3448 Cas ...
- POJ 3261 Milk Patterns 【后缀数组 最长可重叠子串】
题目题目:http://poj.org/problem?id=3261 Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Subm ...
- poj3261 Milk Patterns 后缀数组求可重叠的k次最长重复子串
题目链接:http://poj.org/problem?id=3261 思路: 后缀数组的很好的一道入门题目 先利用模板求出sa数组和height数组 然后二分答案(即对于可能出现的重复长度进行二分) ...
- poj 3261 Milk Patterns(后缀数组)(k次的最长重复子串)
Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7938 Accepted: 3598 Cas ...
随机推荐
- python3 基本数据类型_1
不得已,要学习python3了,之前了解到py2与py3有很大不同,不过学起来才能感觉到,比如print. 不过,同样的代码,可以使用py3,py2执行,结果也相似,大家可以看看. 大概因为初学,还未 ...
- vue封装一些常用组件loading、switch、progress
vue封装一些常用组件loading.switch.progress github文档https://github.com/zengjielin/vue-component-library loadi ...
- [MicroSoft]Introducing .NET 5
Introducing .NET 5 Richard https://devblogs.microsoft.com/dotnet/introducing-net-5/ 将路线图 完整的给出来了. Ma ...
- 小油2018 win7旗舰版64位GHOST版的,安装telnet客户端时,提示:出现错误。并非所有的功能被成功更改。
win7旗舰版64位GHOST版的,安装telnet客户端时,提示:出现错误.并非所有的功能被成功更改. 从安装成功的电脑上拷贝ghost版本缺少的文件,然后再安装telnet客户端,我已打包 链接: ...
- QT DBUS: Not connected to D-Bus server, 注意source /etc/profile
运行环境:ARM 运行如下代码: QDBusConnection bus = QDBusConnection::sessionBus(); if(!bus.registerService(" ...
- C++中的const分析
1,C 语言中的 const: 1,const 修饰的变量是只读的,本质还是变量: 1,C 语言中的 const 使变量具有只读属性: 2,const 只在编译期有用,在运行期无用: 3,const ...
- 什么场景下用redis而不用mysql?
redis我们用作缓存,对查询速度要求比较高的应用场景比较适合.对有复杂逻辑关系的存储不适合. mysql是硬盘存储的,在高性能io要求的项目里不能满足需求,而redis所有数据存在内存里,因此要快得 ...
- 多线程测试工具groboutils的使用
一直使用junit做为服务测试框架,感觉不错.最近有人反映在高并发的情况下,存在服务调不到.无奈再次打开单元测试模拟高并发的 情况,却发现junit不支持并发测试 引入groboutils ...
- 计算机系统结构总结_Memory Hierarchy and Memory Performance
Textbook: <计算机组成与设计——硬件/软件接口> HI <计算机体系结构——量化研究方法> QR 这是youtube上一个非常好的memory syst ...
- sping data jpa 共享主键 OneTonOne 延时加载
当我们使用spring boot创建项目时,系统默认使用的是如下parent. <parent> <groupId>org.springframework.boot</g ...