bzoj4326: NOIP2015 运输计划(二分+LCA+树上差分)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4326
题目大意:有一颗含有n个顶点的树,每两个点之间有一个边权,现在有m个运输计划,每个运输计划包含u和v,一个运输计划的代价为u到v的最短距离,现在可以使一条边的权值为0,求出使所以计划中代价最大值的最小值。
解题思路:最大值的最小值很明显需要二分答案,首先求出所以运输计划消耗的代价,然后二分答案mid,对于消耗的的代价大于mid的运输计划,假设有m条,我们只能使一条边的权值变为0,所以这条边必定是这m个运输计划的路径交,转化成一个求路径交的问题了,这里我们可以用树上差分来做,再开两个数组:tmp和prev。tmp用来记录点的出现次数(具体点说实际上记录的是点到其父亲的边的出现次数),prev记录每个点到其父亲的那条边权值。对于一条起点s,终点t的路径。我们这样处理:tmp[s]++,tmp[t]++,tmp[LCA(s,t)]-=2。最后要从所有叶结点把权值向上累加用一遍dfs就可以了。tmp[s]++,推到根后,根到s的tmp值均加了1,同理tmp[t]++,从根到t的tmp值也都加了1,而tmp[LCA(s,t)]-=2上推使得从根到LCA(s,t)的tmp值又变回原来的值,就能把多余的路径都减掉。对于多次操作,我只需要维护tmp的值,最后一次性上推即可。如果tmp[i]等于路径的个数,即代表i到其父亲的那条边是所有路径的交。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=;
int n,m,dist[maxn],tot,depth[maxn],head[maxn],fa[maxn][],tmp[maxn],prev[maxn];
struct Edge{
int v,next,w;
}edge[maxn*];
void add(int u,int v,int w){
edge[tot].v=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++;
}
struct Query{
int u,v,dis,lca;
}q[maxn];
void dfs(int u,int pre){
depth[u]=depth[pre]+;
fa[u][]=pre;
for(int i=;i<=;i++)
fa[u][i]=fa[fa[u][i-]][i-];
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(v==pre){
prev[u]=edge[i].w;
continue;
}
dist[v]=dist[u]+edge[i].w;
if(v!=pre) dfs(v,u);
}
}
int LCA(int u,int v){
if(depth[u]<depth[v]) swap(u,v);
for(int i=;i>=;i--){
if(depth[u]-(<<i)>=depth[v]) u=fa[u][i];
}
if(u==v) return u;
for(int i=;i>=;i--){
if(fa[u][i]!=fa[v][i]) u=fa[u][i],v=fa[v][i];
}
return fa[u][];
}
void dfs1(int u,int pre){
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(v==pre) continue;
dfs1(v,u);
tmp[u]+=tmp[v];
}
}
bool check(int x){
memset(tmp,,sizeof(tmp));
int cnt=;
int Maxx=;
for(int i=;i<=m;i++){
if(q[i].dis>x){
tmp[q[i].u]++;
tmp[q[i].v]++;
tmp[q[i].lca]-=;
Maxx=max(Maxx,q[i].dis);
cnt++;
}
}
if(cnt==)return true;
dfs1(,);
for(int i=;i<=n;i++){
if(tmp[i]==cnt&&Maxx-prev[i]<=x) return true;
}
return false;
}
int main(){
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w); add(v,u,w);
}
depth[]=-;
dfs(,);
for(int i=;i<=m;i++){
scanf("%d%d",&q[i].u,&q[i].v);
q[i].lca=LCA(q[i].u,q[i].v);
q[i].dis=dist[q[i].u]+dist[q[i].v]-*dist[q[i].lca];
// cout<<q[i].dis<<endl;
// cout<<dist[q[i].u]<<" "<<dist[q[i].v]<<" "<<dist[lca(q[i].u,q[i].v)]<<endl;
}
int l=,r=1e9;
int ans;
while(l<=r){
int mid=(l+r)/;
if(check(mid)){
ans=mid;
r=mid-;
}else l=mid+;
}
printf("%d\n",ans);
return ;
}
bzoj4326: NOIP2015 运输计划(二分+LCA+树上差分)的更多相关文章
- BZOJ 4326: NOIP2015 运输计划(二分,树上差分)
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1945 Solved: 1243[Submit][Status][Discuss] Descript ...
- P2680 运输计划[二分+LCA+树上差分]
题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间,这 n-1n−1 条航道连通了 LL 国的所有星球. 小 ...
- [luogu]P2680 运输计划[二分答案][树上差分]
[luogu]P2680 [NOIP2015]运输计划 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n ...
- 洛谷P2680 运输计划(倍增LCA + 树上差分 + 二分答案)
[题目链接] [思路]: 根据题意可以明显看出,当所有任务都完成时的时间是最终的结果,也就是说本题要求,求出最小的最大值. 那这样的话就暗示了将答案二分,进行check. [check方法]: 如果说 ...
- loj2425 「NOIP2015」运输计划[二分答案+树上差分]
看到题意最小化最长路径,显然二分答案,枚举链长度不超过$\text{mid}$,然后尝试检验.````` 检验是否存在这样一个边置为0后,全部链长$\le\text{mid}$,其最终目标就是.要让所 ...
- luogu P2680 运输计划 (二分答案+树上差分)
题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间 ...
- LOJ2425 NOIP2015 运输计划 【二分+LCA+树上差分】*
LOJ2425 NOIP2015 运输计划 LINK 题意:给你一颗树,可以将任意一条边的权值变成0,然后求m条路径的长度的最小值 思路: 先二分最后的距离ans,然后我们把路程大于ans的所有路径拿 ...
- BZOJ 4326 NOIP2015 运输计划 (二分+树上差分)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1930 Solved: 1231[Submit][Statu ...
- [NOIP2015]运输计划 线段树or差分二分
目录 [NOIP2015]运输计划 链接 思路1 暴力数据结构 思路2 二分树上差分 总的 代码1 代码2 [NOIP2015]运输计划 链接 luogu 好久没写博客了,水一篇波. 思路1 暴力数据 ...
- NOIP2015 运输计划 - 二分 + 树链剖分 / (倍增 + 差分)
BZOJ CodeVS Uoj 题目大意: 给一个n个点的边带权树,给定m条链,你可以选择树中的任意一条边,将它置为0,使得最长的链长最短. 题目分析: 最小化最大值,二分. 二分最短长度mid,将图 ...
随机推荐
- code first System.Data.Entity.Infrastructure.CommitFailedException: An error was reported while committing a database transaction but it could not be determined whether the transaction succeeded
System.Data.Entity.Infrastructure.CommitFailedException: An error was reported while committing a da ...
- SpringBoot 优雅的整合 Shiro
Apache Shiro是一个功能强大且易于使用的Java安全框架,可执行身份验证,授权,加密和会话管理.借助Shiro易于理解的API,您可以快速轻松地保护任何应用程序 - 从最小的移动应用程序到最 ...
- 后盾网lavarel视频项目---1、数据迁移
后盾网lavarel视频项目---1.数据迁移 一.总结 一句话总结: 1.lavarel的数据迁移比较简单,就是用php来创建数据表 2.创建迁移文件:php artisan make:migrat ...
- 使用jdk自带的visualVM监控远程监控was
1.登录was控制台https://172.16.87.221:9043/ibm/console/unsecureLogon.jsp服务器--服务器类型--Java 和进程管理---进程定义---Ja ...
- python检测编码
# -*- coding: utf-8 -*- import chardet import urllib #可根据需要,选择不同的数据 TestData = urllib.urlopen('http: ...
- seleniumIDE回放找不到页面元素
seleniumIDE回放找不到页面元素 如下所示,自动回放就报错,手动执行就不报错.
- python locust 进行压力测试
最近公司项目周期比较赶, 项目是软硬结合,在缺少硬件的情况下,通过接口模拟设备上下架和购买情况,并进行压力测试, 本次主要使用三个接口 分别是3个场景: 生成商品IP, 对商品进行上架, 消费者购买商 ...
- Html5 Canvas斗地主游戏
过完年来公司,没什么事,主管说研究下html5 游戏,然后主管就给了一个斗地主的demo,随后我就开始看代码, 现在我看了html5以及canvas相关知识和斗地主的demo后,自己用demo上的素材 ...
- scala加载spark MLlib等所有相关jar的问题
1.找到spark安装目录 E:\spackLearn\spark-2.3.3-bin-hadoop2.7\jars 里面放的是spark的所有依赖jar包 2.从idea里面javalib导入即可调 ...
- Flask框架(五) —— session源码分析
Flask框架(五) —— session源码分析 目录 session源码分析 1.请求来了,执行__call__方法 2.__call__方法 3.调用__call__方法 3.1.ctx = s ...