问题描述

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S
1 2 3 4 5
Bunches 1 (azaleas) 7 23 -5 -24 16
2 (begonias) 5 21 -4 10 23
3 (carnations) -21 5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

输入格式

  • The first line contains two numbers: F, V.

  • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.

  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

  • F <= V <= 100 where V is the number of vases.

  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

输出格式

The first line will contain the sum of aesthetic values for your arrangement.

样例输入

3 5

7 23 -5 -24 16

5 21 -4 10 23

-21 5 -4 -20 20

样例输出

53

题目大意

给你一些花和一些花瓶,其中花要放在花瓶里,花和花瓶的摆放必须按照编号顺序,即序号小的不能放在序号大的右边。每个花放在不同的花瓶中都有不同的贡献,求最大的贡献总和。

解析

一道比较水的线性动态规划。既然都只能按照顺序来摆放,那么每一个状态都只与它前面的状态有关。设f[i][j]表示前i朵花放在前j个花瓶里的最大贡献。那么我们可以用前面的摆放方式推出f[i][j]。设当前花为i,摆在前j个花瓶中,k为小于j的花瓶编号,那么有状态转移方程如下:

\[f[i][j]=max(f[i][j],f[i-1][k]+a[i][j])
\]

其中a[i][j]表示第i朵花放在第j个花瓶中的贡献。最后答案即为f[n][m]。

注意,(1)由于可能出现负数,f数组初始化时要设成负无穷大,边界状态还是设为0。(2)每次决定花瓶时要保证最后剩下的花瓶能够摆下剩下的花,前面的花瓶能够摆下前面已经摆过的花。

代码

  1. #include <iostream>
  2. #include <cstdio>
  3. #define N 102
  4. using namespace std;
  5. int n,m,i,j,k,a[N][N],f[N][N];
  6. int main()
  7. {
  8. cin>>n>>m;
  9. for(i=1;i<=n;i++){
  10. for(j=1;j<=m;j++) cin>>a[i][j];
  11. }
  12. for(i=1;i<=n;i++){
  13. for(j=1;j<=m;j++) f[i][j]=-(1<<30);
  14. }
  15. for(i=1;i<=m;i++) f[0][i]=0;
  16. for(i=1;i<=n;i++){
  17. for(j=i;j<=m-(n-i);j++){
  18. for(k=i-1;k<j;k++){
  19. f[i][j]=max(f[i][j],f[i-1][k]+a[i][j]);
  20. }
  21. }
  22. }
  23. cout<<f[n][m]<<endl;
  24. return 0;
  25. }

[CH5E02] A Little Shop of Flowers的更多相关文章

  1. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  2. [POJ1157]LITTLE SHOP OF FLOWERS

    [POJ1157]LITTLE SHOP OF FLOWERS 试题描述 You want to arrange the window of your flower shop in a most pl ...

  3. SGU 104. Little shop of flowers (DP)

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  4. POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)

    LITTLE SHOP OF FLOWERS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19877 Accepted: 91 ...

  5. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  6. poj1157LITTLE SHOP OF FLOWERS

    Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...

  7. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

  8. Poj-1157-LITTLE SHOP OF FLOWERS

    题意为从每行取一瓶花,每瓶花都有自己的审美价值 第 i+1 行取的花位于第 i 行的右下方 求最大审美价值 dp[i][j]:取到第 i 行,第 j 列时所获得的最大审美价值 动态转移方程:dp[i] ...

  9. 【SGU 104】Little shop of flowers

    题意 每个花按序号顺序放到窗口,不同窗口可有不同观赏值,所有花都要放上去,求最大观赏值和花的位置. 分析 dp,dp[i][j]表示前i朵花最后一朵在j位置的最大总观赏值. dp[i][j]=max( ...

随机推荐

  1. goroutine 分析 协程的调度和执行顺序 并发写

    package main import ( "fmt" "runtime" "sync" ) const N = 26 func main( ...

  2. Glide 图片框架

    学习参考:https://blog.csdn.net/guolin_blog/article/details/53759439 一 基础使用 Picasso比Glide更加简洁和轻量,Glide比Pi ...

  3. JQuery ajax 滚动底部加载更多

    <%@ Page Language="C#" %> <%@ Import Namespace="System.IO" %> <%@ ...

  4. Vue实现音乐播放器(七):轮播图组件(二)

    轮播图组件 <template> <div class="slider" ref="slider"> <div class=&qu ...

  5. linux 软连接的使用

    软连接是linux中一个常用命令,它的功能是为某一个文件在另外一个位置建立一个同不的链接. 具体用法是:ln -s 源文件 目标文件. 当 我们需要在不同的目录,用到相同的文件时,我们不需要在每一个需 ...

  6. Mysql新增字段到大数据表导致锁表

    昨天晚上7点左右,对一张表进行加字段,大概200多万条记录,字段90多个的大表,结果造成mysql锁表,进而导致服务不可用.执行语句如下: ALTER TABLE `sc_stockout_order ...

  7. vue-router路由如何实现传参

    tip: 用params传参,F5强制刷新参数会被清空,用query,由于参数适用路径传参的所以F5强制刷新也不会被清空.(传参强烈建议适用string) 也可以选用sessionstorage/lo ...

  8. SpringBoot jar程序配置成服务运行

    windows 版本 http://www.cppblog.com/aurain/archive/2014/01/23/205534.aspx linux 版本 https://blog.csdn.n ...

  9. CentOS7 通过YUM安装MySQL5.7 linux

    CentOS7 通过YUM安装MySQL5.7 1.进入到要存放安装包的位置 cd /home/lnmp 2.查看系统中是否已安装 MySQL 服务,以下提供两种方式: rpm -qa | grep  ...

  10. FastDFS搭建单机图片服务器(二)

    防丢失转载:https://blog.csdn.net/MissEel/article/details/80856194 根据 分布式文件系统 - FastDFS 在 CentOS 下配置安装部署 和 ...