正则化的L1范数和L2范数
范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title
首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度
主要的几种类型包括:1)0-1损失函数 2)平方损失函数 3)绝对损失函数 4) 对数损失函数
0-1损失函数:
平方损失函数:
绝对损失函数:
对数损失函数:
由此延伸出对应的概念:
其次介绍一般的范数表示:
范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小
向量的范数:
1-范数,计算方式为向量所有元素的绝对值之和。

2-范数,计算方式跟欧式距离的方式一致。

矩阵的范数:
假设矩阵的大小为m∗n,即m行n列。
1-范数,又名列和范数。顾名思义,即矩阵列向量中绝对值之和的最大值。

2-范数,又名谱范数,计算方法为ATA矩阵的最大特征值的开平方。

其中λ1为的最大特征值。
正则化也就是经验风险项加上正则化项,从而达到对模型选择的目的,以做到从模型拟合效果(经验风险)和复杂度(正则化项)来选去最优模型。
正则化的一般表示形式为:
其中第一项表示经验风险,第二项表示正则化项
正则化可以表示为多个形式,以回归方程为例,由于其损失函数为平方损失,正则化表示为参数向量的L2范数:
在这里||w||表示参数向量w的L2范数。
正则化也可以表示为参数向量的L1范数
其中||w||表示参数向量w的L1范数
以上部分的经验风险表现越小模型越复杂,这时候正则化项为表现较大,所以我们主要还是筛选经验风险和正则化项同时较小的模型。
注:
L1范数因为表现出比L0范数更好的求解性而应用较为广泛
L2范数表现为向量各元素平方和求平方根,我们让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。
正则化的L1范数和L2范数的更多相关文章
- L1范数与L2范数
L1范数与L2范数 L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干 ...
- L1范数与L2范数正则化
2018-1-26 虽然我们不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合.这就要求在增加模型复杂度.提高在可观测数据上的性能表现得同时,又需要兼顾 ...
- L1范数和L2范数
给定向量x=(x1,x2,...xn)L1范数:向量各个元素绝对值之和L2范数:向量各个元素的平方求和然后求平方根Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方L∞范数:向量各个元素求绝对值 ...
- Lp距离, L1范数, 和L2范数(转载)
范式可以理解成距离 转载自: https://blog.csdn.net/hanhuili/article/details/52079590 内容如下: 由此可见,L2其实就是欧式距离.工程上,往往不 ...
- L0、L1、L2范数正则化
一.范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数. 一般分为L0.L1.L2与L_infinity范数. 二.范数正则化背景 1. 监督机器学习问题无 ...
- paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数(转)
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...
- L0、L1与L2范数、核范数(转)
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
随机推荐
- 前后端分离项目中后台集成shiro需要注意的二三事
1. 修改 Shiro 认证失败后默认重定向处理问题 a. 继承需要使用的 ShiroFilter,重载 onAccessDenied() 方法: @Override protected boolea ...
- 负载均衡环境搭建(nginx和tomcat)
偶然看到博客上一篇负载均衡的文章,学习了一下,此处做下记录 目录 1.环境准备 2.tomcat配置 3.nginx配置 1.环境准备 第一步:java环境 第二步:nginx和pcre源码包 下载链 ...
- 你还没有真正理解的innodb_flush_log_at_trx_commit
关于innodb_flush_log_at_trx_commit的描述,看了mysql手册中的解释,感觉都不够清晰明了,下面试图以最简单直白的方式解释一下innodb_flush_log_at_trx ...
- 您配置文件中的设置 (空密码的 root) 与 MySQL 默认管理员账户对应...的解决办法
您配置文件中的设置 (空密码的 root) 与 MySQL 默认管理员账户对应.……解决办法很简单:1.修改root@localhost权限的密码. 打开wamp的phpmyadmin,进入它的管理界 ...
- django-xadmin设置全局变量
class GlobalSetting(object): site_title = '自己的命名' site_footer = '底部命名'# 收缩菜单 menu_style = 'accordion ...
- debian下重装mysql
mysql总是报错,说sock文件不存在,网上若干方法,更改权限,更改配置文件,结果还是不能正常生成.sock文件.没办法,删除,重新安装. 完全删除: 删除 mysqlsudo apt-get au ...
- Eclipse查看jdk源码(Ctrl+左键)
Window ->Preferences ->Java ->Installed JREs ->选中jdk ->Edit ->选中rt.jar ->source ...
- Java 类在 Tomcat 中是如何加载的?
作者 :xingoo https://www.cnblogs.com/xing901022/p/4574961.html 说到本篇的Tomcat类加载机制,不得不说翻译学习Tomcat的初衷. 之前实 ...
- 13 个设计 REST API 的最佳实践
原文 RESTful API Design: 13 Best Practices to Make Your Users Happy 写在前面 之所以翻译这篇文章,是因为自从成为一名前端码农之后,调接口 ...
- 「Vue.js」Vue-Router + Webpack 路由懒加载实现
一.前言 当打包构建应用时,Javascript 包会变得非常大,影响页面加载.如果我们能把不同路由对应的组件分割成不同的代码块,然后当路由被访问的时候才加载对应组件,这样就更加高效了.结合 Vue ...