正则化的L1范数和L2范数
范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title
首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度
主要的几种类型包括:1)0-1损失函数 2)平方损失函数 3)绝对损失函数 4) 对数损失函数
0-1损失函数:
平方损失函数:
绝对损失函数:
对数损失函数:
由此延伸出对应的概念:
其次介绍一般的范数表示:
范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小
向量的范数:
1-范数,计算方式为向量所有元素的绝对值之和。
2-范数,计算方式跟欧式距离的方式一致。
矩阵的范数:
假设矩阵的大小为m∗n,即m行n列。
1-范数,又名列和范数。顾名思义,即矩阵列向量中绝对值之和的最大值。
2-范数,又名谱范数,计算方法为ATA矩阵的最大特征值的开平方。
其中λ1为的最大特征值。
正则化也就是经验风险项加上正则化项,从而达到对模型选择的目的,以做到从模型拟合效果(经验风险)和复杂度(正则化项)来选去最优模型。
正则化的一般表示形式为:
其中第一项表示经验风险,第二项表示正则化项
正则化可以表示为多个形式,以回归方程为例,由于其损失函数为平方损失,正则化表示为参数向量的L2范数:
在这里||w||表示参数向量w的L2范数。
正则化也可以表示为参数向量的L1范数
其中||w||表示参数向量w的L1范数
以上部分的经验风险表现越小模型越复杂,这时候正则化项为表现较大,所以我们主要还是筛选经验风险和正则化项同时较小的模型。
注:
L1范数因为表现出比L0范数更好的求解性而应用较为广泛
L2范数表现为向量各元素平方和求平方根,我们让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。
正则化的L1范数和L2范数的更多相关文章
- L1范数与L2范数
L1范数与L2范数 L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干 ...
- L1范数与L2范数正则化
2018-1-26 虽然我们不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合.这就要求在增加模型复杂度.提高在可观测数据上的性能表现得同时,又需要兼顾 ...
- L1范数和L2范数
给定向量x=(x1,x2,...xn)L1范数:向量各个元素绝对值之和L2范数:向量各个元素的平方求和然后求平方根Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方L∞范数:向量各个元素求绝对值 ...
- Lp距离, L1范数, 和L2范数(转载)
范式可以理解成距离 转载自: https://blog.csdn.net/hanhuili/article/details/52079590 内容如下: 由此可见,L2其实就是欧式距离.工程上,往往不 ...
- L0、L1、L2范数正则化
一.范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数. 一般分为L0.L1.L2与L_infinity范数. 二.范数正则化背景 1. 监督机器学习问题无 ...
- paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数(转)
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...
- L0、L1与L2范数、核范数(转)
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
随机推荐
- sh/bash/csh/Tcsh/ksh/pdksh等shell的区别
w shell confusion..what is diff between bash, ksh, csh, tcsh..?? http://www.linuxquestions.org/ques ...
- 关于 token
用户在浏览器做一系列操作,后台服务怎么判断这些操作是来自同一个用户? 1. seesion 用户登录后,后台生成 sessionid 返回给浏览器,浏览器的每次请求带上 sessionid,后台关联 ...
- 测开之路九十八:js变量和语句
这里为了方便调试,在jsbin网站上面编写js脚本:https://jsbin.com/?js,console 可以点击增加/减少对应展示分页,Console为控制台部分,Output为页面部分 变量 ...
- 微信企业号 发送信息 shell
微信企业号发送信息shell #可作为shell函数模块调用,用于微信通知.jenkins发版微信通知等等 # 微信API官方文档 https://work.weixin.qq.com/api/doc ...
- exceptions: django2.2/ mysql ImproperlyConfigured: mysqlclient 1.3.13 or newer is required; you have 0.9.3
在centos部署python应用后访问页面,显示如下异常信息 报错环境 python=3.6,django=2.2……django.core.exceptions.ImproperlyConfigu ...
- 【SD系列】SAP 查看销售订单时,报了一个错误消息,“项目不符合计划行(程序错误)”
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[SD系列]SAP 查看销售订单时,报了一个错误 ...
- Value Iteration Algorithm for MDP
Value-Iteration Algorithm: For each iteration k+1: a. calculate the optimal state-value function for ...
- Layerui 弹出层的位置设置
距顶 offset: '300px' 例1: layer.msg("请先选择项!", { offset: '300px' });例2: layer.confirm("确定 ...
- 详解微信小程序支付流程
转发博主 https://blog.csdn.net/qq_38378384/article/details/80882980 花了几天把小程序的支付模块接口写了一下,可能有着公众号开发的一点经验,没 ...
- IQueryable在LINQ中
IQueryable接口定义如下: // 摘要: // 提供对未指定数据类型的特定数据源的查询进行计算的功能. public interface IQueryable : IEnumerable { ...