As rich as Crassus

题目链接

题目描述

Crassus, the richest man in the world, invested some of his money with the Very Legitimate International Bank. The Bank offered a remarkable interest rate. They promised that given an initial investment of x, the balance at the beginning of the nth year would be xn (counting the first year as year 1).

At the beginning of the 3rd year, there is a problem. It turns out that this investment opportunity is too good to be true, and it is actually a fraud. The Bank has spent all the money, and the directors have disappeared. Since Crassus is very rich, the Government decides to help him. They will pay him back his initial deposit out of taxpayers’ money.

The Bank has lost all records of Crassus’ original deposit, but does have information about what Crassus’ current deposit value should be. This information is stored on 3 separate computers. Unfortunately, each computer only has a limited amount of memory, and is also very badly designed, so each computer stores integers modulo Ni, for i = 1,2,3. Though these values are all large enough to correctly store the initial value x, Crassus now has so much money ‘invested’ with the Bank that the computers don’t have enough memory to store it correctly. I.e. x3>Ni for all i = 1,2,3.

As the government official in charge of giving Crassus his initial deposit back, you must find the value of the original x that he invested. You know the numbers N1,N2,N3, and the value x3 mod Ni for all i. You also read in the documentation for the computers that the numbers N1,N2,N3, have the property that if p is a prime number and p divides Ni, then p does not divide Nj for all i ≠ j.

输入

The first line contains a single number T indicating the number of test cases (0 < T ≤ 10).

The next 2T lines of input come in pairs as follows. The first line of each pair contains three numbers N1,N2,N3, separated by spaces (0 < Ni < 231 for all i).

The second line of each pair contains the values x3 mod Ni for each i, again separated by spaces.

输出

The value of x for each test case, written out in full, each on a new line.

样例输入

2
6 11 19
5 4 11
25 36 7
16 0 6

样例输出

5
6

题解

扩展剩余定理 板子来自传送门

代码

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define scac(x) scanf("%c",&x)
#define sca(x) scanf("%d",&x)
#define sca2(x,y) scanf("%d%d",&x,&y)
#define sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define scl(x) scanf("%lld",&x)
#define scl2(x,y) scanf("%lld%lld",&x,&y)
#define scl3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z)
#define pri(x) printf("%d\n",x)
#define pri2(x,y) printf("%d %d\n",x,y)
#define pri3(x,y,z) printf("%d %d %d\n",x,y,z)
#define prl(x) printf("%lld\n",x)
#define prl2(x,y) printf("%lld %lld\n",x,y)
#define prl3(x,y,z) printf("%lld %lld %lld\n",x,y,z)
#define mst(x,y) memset(x,y,sizeof(x))
#define ll long long
#define LL long long
#define pb push_back
#define mp make_pair
#define P pair<double,double>
#define PLL pair<ll,ll>
#define PI acos(1.0)
#define eps 1e-6
#define inf 1e17
#define mod 1e9+7
#define INF 0x3f3f3f3f
#define N 1005
const int maxn = 5000005;
ll m[105],a[105],n=3;
LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b){x=1,y=0;return a;}
LL re=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-(a/b)*y;
return re;
} LL work(){
LL M=m[1],A=a[1],t,d,x,y;int i;
for(i=2;i<=n;i++){
d=exgcd(M,m[i],x,y);
if((a[i]-A)%d) return -1;
x*=(a[i]-A)/d,t=m[i]/d,x=(x%t+t)%t;
A=M*x+A,M=M/d*m[i],A%=M;
}
A=(A%M+M)%M;
return A;
} int main()
{
int t;
sca(t);
while(t--)
{
rep(i,1,n+1) scl(m[i]);
rep(i,1,n+1) scl(a[i]);
ll ans = work();
if(ans==-1)
printf("-1\n");
else
{
if(!ans)
printf("0\n");
else
{
ll tmp = pow(ans,1.0/3.0);
if(tmp * tmp * tmp < ans)
printf("%lld\n", tmp + 1);
else
printf("%lld\n", tmp);
}
}
}
return 0;
}

upc组队赛14 As rich as Crassus【扩展中国剩余定理】的更多相关文章

  1. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  2. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  3. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  4. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT

    EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...

  6. [poj2891]Strange Way to Express Integers(扩展中国剩余定理)

    题意:求解一般模线性同余方程组 解题关键:扩展中国剩余定理求解.两两求解. $\left\{ {\begin{array}{*{20}{l}}{x = {r_1}\,\bmod \,{m_1}}\\{ ...

  7. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  8. poj 2891 Strange Way to Express Integers【扩展中国剩余定理】

    扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...

  9. hdu 1573 X问题【扩展中国剩余定理】

    扩展中国剩余定理的板子,合并完之后算一下范围内能取几个值即可(记得去掉0) #include<iostream> #include<cstdio> #include<cm ...

随机推荐

  1. 线段树(two value)与树状数组(RMQ算法st表)

    士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比 ...

  2. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  3. Codeforces 1156D 0-1-Tree ( 并查集 || 树形DP )

    <题目链接> 题目大意: 给定一颗无向树,树的边权只要0/1两种情况,现在问你这棵树上存在多少对有序对<u,v>,满足u-->v的路径上,如果出现边权为1的边之后,就不能 ...

  4. MySQL 新建用户和数据库

    MySQL 新建用户和数据库 修改MySql的密码为qwe123 /usr/local/bin/mysqladmin -u root -p password qwe123 mysql设置root远程访 ...

  5. vue 页面切换从右侧切入效果

    1.将切换的页面用transition包裹 <div class="index-content"> <transition> <router-view ...

  6. 初学Java 求最大公约数

    import java.util.Scanner; public class GreatesCommonDivisor { public static void main(String[] args) ...

  7. HDU4035 Maze 期望DP+树形DP(好题)

    题意:有一个树形的迷宫,有N个房间(标号为1~N)以及N-1条通道将它们连通,一开始在1号房间,每进入一个房间i,有k[i]的概率被陷阱杀死回到房间1,有s[i]的概率找到出口逃离迷宫,如果没有找到出 ...

  8. Go 数组(1)

    1.一旦声明,数组里存储的数据类型和数组长度就都不能改变了.如果需要存储更多的元素, 就需要先创建一个更长的数组,再把原来数组里的值复制到新数组里. 例如: ]int 2.使用数组字面量声明数组 // ...

  9. Gitbook环境搭建及制作——2019年10月24日

    1.gitbook介绍 GitBook 是一个基于 Node.js 的命令行工具,支持 Markdown 和 AsciiDoc 两种语法格式,可以输出 HTML.PDF.eBook 等格式的电子书.可 ...

  10. hive中Sort By,Order By,Cluster By,Distribute By,Group By的区别

    order by:  hive中的order by 和传统sql中的order by 一样,对数据做全局排序,加上排序,会新启动一个job进行排序,会把所有数据放到同一个reduce中进行处理,不管数 ...