[伯努利数] poj 1707 Sum of powers
题目链接:
http://poj.org/problem?id=1707
Language:
Default
Sum of powers
Description
A young schoolboy would like to calculate the sum
![]() for some fixed natural k and different natural n. He observed that calculating ik for all i (1<=i<=n) and summing up results is a too slow way to do it, because the number of required arithmetical operations increases as n increases. Fortunately, there is another method which takes only a constant number of operations regardless of n. It is possible to show that the sum Sk(n) is equal to some polynomial of degree k+1 in the variable n with rational coefficients, i.e., ![]() We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. M, ak+1, ak, ... , a1, a0) will be unique for the given k. You have to write a program to find such set of coefficients to help the schoolboy make his calculations quicker. Input
The input file contains a single integer k (1<=k<=20).
Output
Write integer numbers M, ak+1, ak, ... , a1, a0 to the output file in the given order. Numbers should be separated by one space. Remember that you should write the answer with the smallest positive M possible.
Sample Input 2 Sample Output 6 2 3 1 0 Source |
题目意思:
已知而且
求最小的M。使得a[k+1]---a[0]都为整数。
解题思路:
伯努利数:http://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%95%B0
所以有1^k+2^k+3^k+...+n^k=1/(k+1)(C[k+1,0)*B[0]*n^(k+1-0)+C[k+1,1]*B[1]*n^(k+1-1)+...+C[k+1,j]*B[j]*n^(k+1-j)+...+C[k+1,k]*B[k]*n^(k+1-k))+n^k
先求出伯努利数,然后分母求最小公倍数就可以。
注意n^k的系数要加上后面的n^k为C[k+1,1]*B[1]+(k+1)
最后仅仅剩下分数加法了。
注意最大公约数为负数的情况,强制转化为正数,用分子保存整个分数的正负性。
代码:
//#include<CSpreadSheet.h>
#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define Maxn 25
ll C[Maxn][Maxn];
struct PP
{
ll a,b;
}B[Maxn],ans[Maxn];
ll k;
ll gcd(ll a,ll b)
{
if(a%b==0)
{
if(b>0)
return b;
return -b;
}
return gcd(b,a%b);
}
PP add(PP a,PP b) //模拟两个分数的加法
{
if(!a.a) //假设有一个为0
return b;
if(!b.a)
return a;
ll temp=a.b/gcd(a.b,b.b)*b.b; //求出分母的最小公倍数
//printf("%I64d\n",temp);
PP res;
res.a=temp/a.b*a.a+temp/b.b*b.a; //分子相加
res.b=temp;
if(res.a) //约掉最大公约数
{
ll tt=gcd(res.a,res.b);
res.b/=tt;
res.a/=tt;
}
return res;
}
void init()
{
memset(C,0,sizeof(C));
for(int i=0;i<=25;i++)
{
C[i][0]=1;
for(int j=1;j<i;j++)
C[i][j]=C[i-1][j]+C[i-1][j-1];
C[i][i]=1;
}
B[0].a=1,B[0].b=1; //求伯努利数
for(int i=1;i<=20;i++) //用递推关系求
{
PP temp;
temp.a=0;
temp.b=0;
for(int j=0;j<i;j++)
{
PP tt=B[j];
tt.a=tt.a*C[i+1][j];
//printf("::::%I64d %I64d:\n",tt.a,tt.b);
if(tt.a)
{
ll te=gcd(tt.a,tt.b);
tt.a/=te;
tt.b/=te;
}
temp=add(temp,tt);
//printf("i:%d j:%d %I64d %I64d:\n",i,j,temp.a,temp.b);
//system("pause");
}
temp.a=-temp.a;
temp.b*=C[i+1][i];
//printf("%I64d %I64d\n",temp.a,temp.b);
//system("pause");
//printf("%I64d\n",gcd(temp.a,temp.b));
if(temp.a)
{
ll te=gcd(temp.a,temp.b);
temp.a/=te;
temp.b/=te;
}
else
temp.b=0;
B[i]=temp;
//printf("i:%d %I64d %I64d\n",i,B[i].a,B[i].b);
//system("pause");
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
//printf("%I64d\n",gcd(-6,12));
init();
while(~scanf("%I64d",&k))
{
ll cur=1;
for(int i=0;i<=k;i++)
{
if(i==1)
{
ans[i].a=k+1; //B[1]=-1/2要加上后面多出来的n^k
ans[i].b=2;
}
else
{
ans[i]=B[i];
ans[i].a*=C[k+1][i];
}
if(ans[i].a) //约分
{
ll temp=gcd(ans[i].a,ans[i].b);
ans[i].a/=temp;
ans[i].b/=temp;
}
else
ans[i].b=0;
if(ans[i].b) //求分母的最小公倍数
cur=cur/gcd(cur,ans[i].b)*ans[i].b;
}
printf("%I64d ",cur*(k+1));
//printf("->%I64d %I64d %I64d\n",cur,ans[0].a,ans[0].b);
for(int i=0;i<=k;i++) //求出通分后每个系数
{
if(ans[i].b)
ans[i].a=cur/ans[i].b*ans[i].a;
//printf("i:%d %I64d\n",i,ans[i].a);
}
for(int i=0;i<=k;i++)
printf("%I64d ",ans[i].a);
printf("0\n"); //最后一个肯定是0
}
return 0;
}
[伯努利数] poj 1707 Sum of powers的更多相关文章
- POJ 1707 Sum of powers(伯努利数)
题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...
- ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法
POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS Memory Limit:65536KB 64bit IO Fo ...
- [CSAcademy]Sum of Powers
[CSAcademy]Sum of Powers 题目大意: 给定\(n,m,k(n,m,k\le4096)\).一个无序可重集\(A\)为合法的,当且仅当\(|A|=m\)且\(\sum A_i=n ...
- POJ.2739 Sum of Consecutive Prime Numbers(水)
POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...
- POJ 2739 Sum of Consecutive Prime Numbers(素数)
POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...
- Euler's Sum of Powers Conjecture
转帖:Euler's Sum of Powers Conjecture 存不存在四个大于1的整数的五次幂恰好是另一个整数的五次幂? 暴搜:O(n^4) 用dictionary:O(n^3) impor ...
- 【POJ1707】【伯努利数】Sum of powers
Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...
- UVA766 Sum of powers(1到n的自然数幂和 伯努利数)
自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...
- UVa 766 Sum of powers (伯努利数)
题意: 求 ,要求M尽量小. 析:这其实就是一个伯努利数,伯努利数公式如下: 伯努利数满足条件B0 = 1,并且 也有 几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个 ...
随机推荐
- PHP算法[转]
这里是用PHP写的几个基础算法,算法的重要性貌似对于PHP程序员不怎么重要,其实是非常重 要的,经典名句:算法+数据结构=程序.作为一名真正的高级PHP程序员,我认为应该熟悉C,如果你想成为真正的程序 ...
- 2018-8-10-win10-UWP-序列化
title author date CreateTime categories win10 UWP 序列化 lindexi 2018-08-10 19:16:50 +0800 2018-2-13 17 ...
- SELECT INTO - 从一个查询的结果中创建一个新表
SYNOPSIS SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ] * | expression [ AS output_name ] [ ...
- linux篇之Nginx web服务器简单部署
一.安装部署nginx 1. 部署前先对nginx介绍下别嫌BB: 如果你听说或使用过Apache软件,那么很快就会熟悉Nginx软件,与Apache软件类似, Nginx(“engine x”)是一 ...
- MongoDB 存储引擎选择
MongoDB存储引擎选择 MongoDB存储引擎构架 插件式存储引擎, MongoDB 3.0引入了插件式存储引擎API,为第三方的存储引擎厂商加入MongoDB提供了方便,这一变化无疑参考了MyS ...
- css----overflow(布局)
CSS overflow 属性用于控制内容溢出元素框时显示的方式. CSS Overflow CSS overflow 属性可以控制内容溢出元素框时在对应的元素区间内添加滚动条. overflow属性 ...
- js 属性getset
属性访问器 一.像C#写实体类一样的写法 var attr={ $x:10,//必须$开头 get x() { return this.$x+1; }, set x(val) { this.$x=va ...
- sql 2008查看进程情况和对应语句,检查死锁进程
---------------------------------进程情况1----------------------- --得到SPID if object_id('tempdb..#info') ...
- JS中数据结构之图
图由边的集合及顶点的集合组成.边是有方向的是有序图(有向图),否则就是无序图(无向图).图中的一系列顶点构成路径,路径中所有的顶点都由边连接.路径的长度用路径中第一个顶点到最后一个顶点之间边的数量表示 ...
- linux 下启动tomcat 时没有执行权限
原因: 没有权限 解决 : chmod 777 *.sh Linux下启动tomcat