题目链接:

http://poj.org/problem?id=1707

Language:
Default
Sum of powers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 735   Accepted: 354

Description

A young schoolboy would like to calculate the sum 
 
for some fixed natural k and different natural n. He observed that calculating ik for all i (1<=i<=n) and summing up results is a too slow way to do it, because the number of required arithmetical operations increases as n increases. Fortunately,
there is another method which takes only a constant number of operations regardless of n. It is possible to show that the sum Sk(n) is equal to some polynomial of degree k+1 in the variable n with rational coefficients, i.e., 
 
We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. M, ak+1, ak, ... , a1, a0) will be unique for the given k. You have to write a program to find
such set of coefficients to help the schoolboy make his calculations quicker.

Input

The input file contains a single integer k (1<=k<=20).

Output

Write integer numbers M, ak+1, ak, ... , a1, a0 to the output file in the given order. Numbers should be separated by one space. Remember that you should write the answer with the smallest positive M possible.

Sample Input

2

Sample Output

6 2 3 1 0

Source

题目意思:

已知而且求最小的M。使得a[k+1]---a[0]都为整数。

解题思路:
伯努利数:http://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%95%B0

所以有1^k+2^k+3^k+...+n^k=1/(k+1)(C[k+1,0)*B[0]*n^(k+1-0)+C[k+1,1]*B[1]*n^(k+1-1)+...+C[k+1,j]*B[j]*n^(k+1-j)+...+C[k+1,k]*B[k]*n^(k+1-k))+n^k

先求出伯努利数,然后分母求最小公倍数就可以。

注意n^k的系数要加上后面的n^k为C[k+1,1]*B[1]+(k+1)

最后仅仅剩下分数加法了。

注意最大公约数为负数的情况,强制转化为正数,用分子保存整个分数的正负性。

代码:

//#include<CSpreadSheet.h>

#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; #define Maxn 25
ll C[Maxn][Maxn];
struct PP
{
ll a,b;
}B[Maxn],ans[Maxn]; ll k; ll gcd(ll a,ll b)
{
if(a%b==0)
{
if(b>0)
return b;
return -b;
} return gcd(b,a%b);
} PP add(PP a,PP b) //模拟两个分数的加法
{
if(!a.a) //假设有一个为0
return b;
if(!b.a)
return a; ll temp=a.b/gcd(a.b,b.b)*b.b; //求出分母的最小公倍数
//printf("%I64d\n",temp);
PP res;
res.a=temp/a.b*a.a+temp/b.b*b.a; //分子相加
res.b=temp; if(res.a) //约掉最大公约数
{
ll tt=gcd(res.a,res.b);
res.b/=tt;
res.a/=tt;
}
return res; } void init()
{
memset(C,0,sizeof(C)); for(int i=0;i<=25;i++)
{
C[i][0]=1;
for(int j=1;j<i;j++)
C[i][j]=C[i-1][j]+C[i-1][j-1];
C[i][i]=1;
}
B[0].a=1,B[0].b=1; //求伯努利数 for(int i=1;i<=20;i++) //用递推关系求
{
PP temp;
temp.a=0;
temp.b=0; for(int j=0;j<i;j++)
{
PP tt=B[j]; tt.a=tt.a*C[i+1][j];
//printf("::::%I64d %I64d:\n",tt.a,tt.b);
if(tt.a)
{
ll te=gcd(tt.a,tt.b);
tt.a/=te;
tt.b/=te;
} temp=add(temp,tt); //printf("i:%d j:%d %I64d %I64d:\n",i,j,temp.a,temp.b);
//system("pause");
} temp.a=-temp.a;
temp.b*=C[i+1][i];
//printf("%I64d %I64d\n",temp.a,temp.b);
//system("pause"); //printf("%I64d\n",gcd(temp.a,temp.b));
if(temp.a)
{
ll te=gcd(temp.a,temp.b);
temp.a/=te;
temp.b/=te;
}
else
temp.b=0;
B[i]=temp;
//printf("i:%d %I64d %I64d\n",i,B[i].a,B[i].b);
//system("pause");
}
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); //printf("%I64d\n",gcd(-6,12)); init();
while(~scanf("%I64d",&k))
{ ll cur=1; for(int i=0;i<=k;i++)
{
if(i==1)
{
ans[i].a=k+1; //B[1]=-1/2要加上后面多出来的n^k
ans[i].b=2;
}
else
{
ans[i]=B[i];
ans[i].a*=C[k+1][i];
} if(ans[i].a) //约分
{
ll temp=gcd(ans[i].a,ans[i].b);
ans[i].a/=temp;
ans[i].b/=temp;
}
else
ans[i].b=0;
if(ans[i].b) //求分母的最小公倍数
cur=cur/gcd(cur,ans[i].b)*ans[i].b; }
printf("%I64d ",cur*(k+1));
//printf("->%I64d %I64d %I64d\n",cur,ans[0].a,ans[0].b);
for(int i=0;i<=k;i++) //求出通分后每个系数
{
if(ans[i].b)
ans[i].a=cur/ans[i].b*ans[i].a;
//printf("i:%d %I64d\n",i,ans[i].a);
}
for(int i=0;i<=k;i++)
printf("%I64d ",ans[i].a);
printf("0\n"); //最后一个肯定是0
}
return 0;
}

[伯努利数] poj 1707 Sum of powers的更多相关文章

  1. POJ 1707 Sum of powers(伯努利数)

    题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...

  2. ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法

    POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS     Memory Limit:65536KB     64bit IO Fo ...

  3. [CSAcademy]Sum of Powers

    [CSAcademy]Sum of Powers 题目大意: 给定\(n,m,k(n,m,k\le4096)\).一个无序可重集\(A\)为合法的,当且仅当\(|A|=m\)且\(\sum A_i=n ...

  4. POJ.2739 Sum of Consecutive Prime Numbers(水)

    POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...

  5. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  6. Euler's Sum of Powers Conjecture

    转帖:Euler's Sum of Powers Conjecture 存不存在四个大于1的整数的五次幂恰好是另一个整数的五次幂? 暴搜:O(n^4) 用dictionary:O(n^3) impor ...

  7. 【POJ1707】【伯努利数】Sum of powers

    Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...

  8. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  9. UVa 766 Sum of powers (伯努利数)

    题意: 求 ,要求M尽量小. 析:这其实就是一个伯努利数,伯努利数公式如下: 伯努利数满足条件B0 = 1,并且 也有 几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个 ...

随机推荐

  1. Ajax —— 服务器端发送JSON数据

    重点需要解决的问题:服务器端如何构建JSON数据 思考:JavaBean转JSON数据,集合转JSON数据,普通java对象(String,Number)转JSON数据 一.Gson开源jar包   ...

  2. Java JNA (一)—— 调用dll

    Java调用C++动态链接库的方式很多,有jnative,jna等.这里介绍如何通过jna的方式调用动态链接库. 调用代码很简单,就是需要注意几个问题. 补充:如dll内部访问配置文件,需将配置文件放 ...

  3. 阿里云centos下搭建vsftpd,被动模式出现的问题

    最近计网课设要做一个ftp服务端,所以先在自己服务器搭一个来了解一下. 首先在默认情况下连接,227 Entering Passive Mode (192,168,*,*,227,175). 显示连接 ...

  4. [数论]原根与指标,BSGS

    刚学了这方面的知识,总结一下.推荐学习数论方面的知识还是看书学习,蒟蒻看的是<初等数论>学的. 这里也推荐几个总结性质的博客,学习大佬的代码和习题. 原根:https://blog.csd ...

  5. tracert显示为超时

    1.那一跳禁PING2.那一跳不对TTL超时做响应处理,直接丢弃3.MPLS VPN网络  

  6. springboot dubbo logback shutdownhook简单总结

      public class Test { public static void main(String[] args){ System.out.println("1: Main start ...

  7. Go 数组(2)

    把同样类型的一个数组赋值给另外一个数组 package main; import "fmt"; func main() { ] string ; array2:=[]string ...

  8. Codeforces 963E Alternating Sum 等比数列+逆元

    题目大意: 看一下样例就明白了 基本思路: 题目中明确提到k为一个周期,稍作思考,把k项看作一项,然后发现这是个等比数列,q=(b/a)^k, 然后重点就是怎样处理等比数列求和表达式中的除法,这个时候 ...

  9. centos 6.5 安装 ant

    从ant官方网站下载ant安装包:apache-ant-1.9.7-bin.tar.gz,解压 tar xvf apache-ant-1.9.7-bin.tar.gz -C /usr/java/ 配置 ...

  10. Linux 多个cpp文件的编译(Makefile)

    打包so文件: CC = g++ CFLAGS=-Wall -O2 -fPIC TARGET = libbg.so SRCS := $(wildcard *.cpp) OBJS := $(patsub ...