7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output
Your program is to write to standard output. The highest sum is written as an integer.
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30

这道题若是从上往下搜索会有2^n条路径,复杂度很高,但若是换个思路,从下往上搜索,复杂度为O(n^2)。
直接dp代码:

include

include

using namespace std;
int main()
{
int n;
cin>>n;
int dp[110][110]={0};
int a[110][110]={0};
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
cin>>a[i][j];
for(int i=n;i>=1;i--)
{
for(int j=1;j<=i;j++)
{
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];
}
}
cout<<dp[1][1]<<endl;
return 0;
}

如果非要从上往下搜索,可以用递推加记忆化搜索,复杂度O(n^2):

include

include

using namespace std;
int a[110][110]={0},dp[110][110];
int n;
int dfs(int i,int j)
{
if(i==n) return a[i][j];
if(dp[i][j]>=0) return dp[i][j];
dp[i][j]=max(dfs(i+1,j),dfs(i+1,j+1))+a[i][j];
return dp[i][j];
}
int main()
{
cin>>n;
memset(dp,-1,sizeof(dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
cin>>a[i][j];
dfs(1,1);
cout<<dp[1][1]<<endl;
return 0;
}

poj1163The Triangle(动态规划,记忆化搜索)的更多相关文章

  1. sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)

    Description In the two-player game "Two Ends", an even number of cards is laid out in a ro ...

  2. Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)

    描述 http://codevs.cn/problem/1017/ 给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大. 1017 乘积最大 2000年NOIP全国联赛普及组NOIP全国联赛提 ...

  3. Poj-P1088题解【动态规划/记忆化搜索】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: http://poj.org/problem?id=1088 题目描述: 区域由一个二维数组给 ...

  4. UVA_437_The_Tower_of_the_Babylon_(DAG上动态规划/记忆化搜索)

    描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  5. 滑雪---poj1088(动态规划+记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 有两种方法 一是按数值大小进行排序,然后按从小到大进行dp即可: #include <iostream> #incl ...

  6. [NOIP2017] 逛公园 (最短路,动态规划&记忆化搜索)

    题目链接 Solution 我只会60分暴力... 正解是 DP. 状态定义: \(f[i][j]\) 代表 \(1\) 到 \(i\) 比最短路长 \(j\) 的方案数. 那么很显然最后答案也就是 ...

  7. 动态规划——I 记忆化搜索

    Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  8. 动态规划——数字三角形(递归or递推or记忆化搜索)

    动态规划的核心就是状态和状态转移方程. 对于该题,需要用抽象的方法思考,把当前的位置(i,j)看成一个状态,然后定义状态的指标函数d(i,j)为从格子出发时能得到的最大和(包括格子本身的值). 在这个 ...

  9. Vijos 1011 清帝之惑之顺治 记忆录式的动态规划(记忆化搜索)

    背景 顺治帝福临,是清朝入关后的第一位皇帝.他是皇太极的第九子,生于崇德三年(1638)崇德八年八月二ten+six日在沈阳即位,改元顺治,在位18年.卒于顺治十八年(1661),终24岁. 顺治即位 ...

随机推荐

  1. [BZOJ3203] [SDOI2013]保护出题人(二分+凸包)

    [BZOJ3203] [SDOI2013]保护出题人(二分+凸包) 题面 题面较长,略 分析 对于第i关,我们算出能够打死前k个个僵尸的最小能力值,再取最大值就可以得到\(y_i\). 前j-1个僵尸 ...

  2. RocksDB存储引擎测试

    一:安装搭建(两个节点都要安装) yum install http://www.percona.com/downloads/percona-release/redhat/0.1-4/percona-r ...

  3. socket中TCP的三次握手连接和四次握手释放

    三次握手连接 A: 我进来了啊 B:(有人来了安排个位子)回复:好的你进来吧 A:好的: 客户端向服务器发送一个SYN J 服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1 客户 ...

  4. 在a标签中使用了onclick修改样式之后a:hover失效

    是因为优先级的原因造成,使用!important修改优先级. 如修改成: .button1:hover {            color: #FFF !important;            ...

  5. Storm消费Kafka值得注意的坑

    问题描述: kafka是之前早就搭建好的,新建的storm集群要消费kafka的主题,由于kafka中已经记录了很多消息,storm消费时从最开始消费问题解决: 下面是摘自官网的一段话:How Kaf ...

  6. html a标签链接点击闪动问题解决

    <a href="#">链接点击会闪动,解决: 这三种都可以用:<a href="javascript:;"></a>< ...

  7. nginx的RPM包制作案例

    使用nginx-1.12.2版本的源码软件,生成对应的RPM包软件,具体如下: - 软件名称为nginx - 软件版本为1.12.2 - RPM软件包可以查询描述信息 - RPM软件包可以安装及卸载 ...

  8. 21eval 函数

    eval() 函数十分强大 ---- 将字符串 当成 有效的表达式 来求职 并 返回计算结果 # 基本的数学计算 # 字符串重复 print(eval("'*' * 5")) # ...

  9. 手写split功能

    def split_new(stringstr, charstr):    """    :param stringstr: 要分割的串    :param charst ...

  10. git 日常 常用命令

    初始化git git init 第一次拉代码: 方式1:git clone git clone https://git.oschina.net/*****.git (https远程仓库地址) 方式2: ...