import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess:
sess.run(init)
for epoch in range(11):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
#保存模型
saver.save(sess,'net/my_net.ckpt')

以上是保存模型;

#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess:
sess.run(init)
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
saver.restore(sess,'net/my_net.ckpt')
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})) #
0.098
INFO:tensorflow:Restoring parameters from net/my_net.ckpt
0.9179

以下是载入模型,第一个print是看看随机生成的参数用于预测分类的结果;第二个print是看看载入的模型来预测分类的结果。

Tensorflow模型保存与载入的更多相关文章

  1. TensorFlow 模型保存/载入

    我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.jobl ...

  2. TensorFlow模型保存和加载方法

    TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name= ...

  3. TensorFlow模型保存和提取方法

    一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将Tens ...

  4. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  5. Tensorflow模型保存与加载

    在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提 ...

  6. 10 Tensorflow模型保存与读取

    我们的模型训练出来想给别人用,或者是我今天训练不完,明天想接着训练,怎么办?这就需要模型的保存与读取.看代码: import tensorflow as tf import numpy as np i ...

  7. 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)

    该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...

  8. 转 tensorflow模型保存 与 加载

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获 ...

  9. 【NLP学习其五】模型保存与载入的注意事项(记问题No module named 'model')

    这是一次由于路径问题(找不到模型)引出模型保存问题的记录 最近,我试着把使用GPU训练完成的模型部署至预发布环境时出现了一个错误,以下是log节选 unpickler.load() ModuleNot ...

随机推荐

  1. AI换脸教程:DeepFaceLab使用教程(1.安装及分解视频)

    首先需要选择合适的DeepFaceLab下载(https://www.deepfacelabs.com/list-5-1.html),然后安装相应的显卡驱动,如果已经准备好这些工作,那么恭喜你,终于开 ...

  2. element 表单校验失败自动聚焦到失败的input框

    1.在对应的input框上添加ref属性,直接根据ref就可精确地获取到元素 <el-form-item label="课程名称" :label-width="fo ...

  3. centos安装gitlab成果

    centos安装gitlab成果 开始之前 在开始之前请先查看官方的刚需文档: https://github.com/gitlabhq/gitlabhq/blob/master/doc/install ...

  4. C#.Net集成Bartender条码打印,VS调试运行可以打印,发布到IIS运行打印报错

    C#.Net集成Bartender条码打印,VS调试运行可以打印,发布到IIS运行打印报错 问题原因: 问题出现在iis账户权限. 解决方法: iis默认是用network service这个账户去执 ...

  5. 【leetcode】689. Maximum Sum of 3 Non-Overlapping Subarrays

    题目如下: In a given array nums of positive integers, find three non-overlapping subarrays with maximum ...

  6. SpringBoot 1.X版本设置Https访问以及跨域https访问的问题

    最近在做的一个项目中出现了Https域向非Https域发送ajax请求无法通过的问题 Mixed Content: The page at was loaded over HTTPS, but req ...

  7. DevOps之持续集成Jenkins+Gitlab

    一.什么是DevOps DevOps(英文Development(开发)和Operations(技术运营)的组合)是一组过程.方法与系统的统称,DevOps是一组最佳实践强调(开发.运维.测试)在应用 ...

  8. UVa 10603 Fill (BFS && 经典模拟倒水 && 隐式图)

    题意 : 有装满水的6升的杯子.空的3升杯子和1升杯子,3个杯子中都没有刻度.不使用道具情况下,是否可量出4升水呢? 你的任务是解决一般性的问题:设3个杯子的容量分别为a, b, c,最初只有第3个杯 ...

  9. 2018百度之星初赛B轮 p1m2

    p1m2 Accepts: 954 Submissions: 4063 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/1310 ...

  10. sh_12_转义字符

    sh_12_转义字符 # \t 在控制台输出一个 制表符,协助在输出文本时 垂直方向 保持对齐 print("1\t2\t3") print("10\t20\t30&qu ...