题目传送门(内部题24)


输入格式

第一行有$3$个整数$n,opt$,$opt$的意义将在输出格式中提到。
第二行有$n$个整数,第$i$个整数表示$a_i$。


输出格式

若$opt=1$,输出一行一个整数表示${ans}_1$。
若$opt=2$,输出一行一个整数表示${ans}_2$。
若$opt=3$,输出两行,第一行一个整数${ans}_1$,第二行一个整数${ans}_2$。


样例

样例输入:

3 3
6 1 3

样例输出:

78
6


数据范围与提示

对于所有数据,$1\leqslant n\leqslant {10}^5,1\leqslant opt\leqslant 3,0\leqslant a_i\leqslant {10}^6$。


题解

对于每个数$a_x$,用单调栈找出它作为最大值的区间$[l_x,r_x]$,所有区间只有包含和不相交关系,没有相交关系,而且所以区间构成了一棵二叉树。
对每个区间$[l_x,r_x]$维护一棵$01trie$树$T_x$。
对每个区间$[l_x,r_x]$维护一个数组$f_x$,其中$f_{x,j}$表示该区间中第$j$位为$1$的数有多少个。
所以区间构成了一棵二叉树,可以对区间进行启发式合并,对于$a_x$控制的区间$[l_x,r_x]$,找到它的左右儿子$lch:[l_x,x−1]$和$rch:[x+1,r_x]$,我们只需要考虑所有包含$x$的区间的答案,而且这些区间的最大值都是$a_x$。
若左区间的长度$<$右区间的长度,我们可以枚举左区间中的每个数$a_i$。
对于${ans}_1$,我们可以分别统计每一个二进制位的答案,若$a_i$的第$j$位是$0$,那么第$j$位的贡献就是$2^jf{rch,j}$,若$a_i$的第$j$位是$1$,情况类似。同时,将 $a_i$更新到$f_x$中。
对于${ans}_2$,问题就转化成右区间中有多少个数$v$满足$v\ xor\ a_i>a_x$,可以在$T_{rch}$中查询。同时,将$a_i$插入到$trie$树$T_x$中。
时间复杂度:$\Theta(n\log n\log v)$。
期望得分:$100$分。
实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n,opt;
int a[100001],c[30],s[100001][30],sta[100001],sum[100001],l[100001],r[100001];
long long flag[30],d[30];
int rt[100001];
int trie[50000000][2],w[50000000],cnt;
long long ans1,ans2;
void add(int x,int y)
{
sum[y]++;
for(int i=0;i<=21;i++)
{
s[y][i]+=x&1;
x>>=1;
}
}
void insert(int x,int l,int r)
{
for(int i=21;i>=0;i--)
{
int p=(x>>i)&1;
w[l]=w[r]+1;
trie[l][p^1]=trie[r][p^1];
trie[l][p]=++cnt;
l=trie[l][p];
r=trie[r][p];
}
w[l]=w[r]+1;
}
int ask(int x,int y,int l,int r)
{
int res=0,ans=0;
for(int i=21;i>=0;i--)
if((y>>i)&1)
if(res+flag[i]>x)
{
ans+=w[trie[r][0]]-w[trie[l][0]];
l=trie[l][1];
r=trie[r][1];
}
else
{
l=trie[l][0];
r=trie[r][0];
res+=flag[i];
}
else
if(res+flag[i]>x)
{
ans+=w[trie[r][1]]-w[trie[l][1]];
l=trie[l][0];
r=trie[r][0];
}
else
{
l=trie[l][1];
r=trie[r][1];
res+=flag[i];
}
return ans;
}
int main()
{
scanf("%d%d",&n,&opt);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
flag[0]=1;for(int i=1;i<=21;i++)flag[i]=flag[i-1]<<1;
cnt=n;
for(int i=1;i<=n;i++)
{
rt[i]=i;
add(a[i],i);
insert(a[i],rt[i],rt[i-1]);
while(sta[0]&&a[sta[sta[0]]]<=a[i])
r[sta[sta[0]--]]=i-1;
l[i]=sta[sta[0]]+1;
sta[++sta[0]]=i;
for(int j=0;j<=21;j++)
s[i][j]+=s[i-1][j];
sum[i]+=sum[i-1];
}
while(sta[0])r[sta[sta[0]--]]=n;
for(int i=1;i<=n;i++)
{
long long res1=0,res2=0;
if(i-l[i]<=r[i]-i)
{
for(int j=0;j<=21;j++)
c[j]=s[r[i]][j]-s[i-1][j];
for(int j=l[i];j<=i;j++)
{
for(int k=0;k<=21;k++)
{
if((a[j]>>k)&1)d[k]=sum[r[i]]-sum[i-1]-c[k];
else d[k]=c[k];
res1=(res1+d[k]*flag[k])%1000000007;
}
res2=(res2+ask(a[i],a[j],rt[i-1],rt[r[i]]))%1000000007;
}
}
else
{
for(int j=0;j<=21;j++)
c[j]=s[i][j]-s[l[i]-1][j];
for(int j=i;j<=r[i];j++)
{
for(int k=0;k<=21;k++)
{
if((a[j]>>k)&1)d[k]=sum[i]-sum[l[i]-1]-c[k];
else d[k]=c[k];
res1=(res1+d[k]*flag[k])%1000000007;
}
res2=(res2+ask(a[i],a[j],rt[l[i]-1],rt[i]))%1000000007;
}
}
ans1=(ans1+res1*a[i])%1000000007;
ans2=(ans2+res2*a[i])%1000000007;
}
switch(opt)
{
case 1:printf("%lld",ans1);break;
case 2:printf("%lld",ans2);break;
case 3:printf("%lld\n%lld",ans1,ans2);break;
}
return 0;
}

rp++

[CSP-S模拟测试]:english(可持久化Trie+启发式合并)的更多相关文章

  1. 【JZOJ5363】【NOIP2017提高A组模拟9.14】生命之树 Trie+启发式合并

    题面 45 在比赛中,我只想到了45分的暴力. 对于一个树中点对,相当于在他们的LCA及其祖先加上这个点对的贡献. 那么这个可以用dfs序+树状数组来维护. 100 想法 我想到了可能要用trie树来 ...

  2. 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块

    题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...

  3. [CSP-S模拟测试]:Race(数学+Trie树)

    题目描述 一年一度的运动会开始了.有$N$个选手参赛,第$i$个选手有一个能力值(保证$A[i]$两两不同),比赛一共进行了天.在第$j$天($0\leqslant j\leqslant 2^{m-1 ...

  4. 【csp模拟赛6】树上统计-启发式合并,线段树合并

    30%:暴力 40%:枚举L,R从L~n枚举,R每增大一个,更新需要的边(bfs实现)60%:枚举每条边, 计算每条边的贡献另外20%的数据:枚举每条边,计算每条边的贡献100%:对于每一条边统计 有 ...

  5. Codeforces 965 枚举轮数贪心分糖果 青蛙跳石头最大流=最小割思想 trie启发式合并

    A /*#include<cstring>#include<algorithm>#include<queue>#include<vector>#incl ...

  6. 6402. 【NOIP2019模拟11.01】Cover(启发式合并)

    题目描述 Description 小 A 现在想用

  7. bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1116  Solved: 292[Submit][Status] ...

  8. 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树

    [BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...

  9. 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

随机推荐

  1. Looper,Handler, MessageQueue

    Looper Looper是线程用来运行消息循环(message loop)的类.默认情况下,线程并没有与之关联的Looper,可以通过在线程中调用Looper.prepare() 方法来获取,并通过 ...

  2. Vagrant 入门 - 配置

    原文地址 现在我们已经有了一个运行 Ubuntu 的虚拟机,并且可以在宿主机上编辑文件并自动同步到虚拟机.现在让我们安装一个 web 服务器,通过服务器访问这些文件. 可以通过 SSH 进入并安装一个 ...

  3. java.io.NotSerializableException错误解决方法

    运行tomcat下面的 ssh项目,启动,打开某页面(让session起作用),停止:再启动,有可能会报类似如下的错误: org.apache.catalina.session.StandardMan ...

  4. JSP+JavaBean 登陆验证

    1.java package cn.gs.ly; import java.util.HashMap; import java.util.Map; public class Register { pri ...

  5. JS中substring()的用法

    例一: <script type="text/javascript"> var str="Hello world!" document.write( ...

  6. 20190818 On Java8 第八章 复用

    第八章 复用 组合语法 初始化引用有四种方法: 当对象被定义时.这意味着它们总是在调用构造函数之前初始化. 在该类的构造函数中. 在实际使用对象之前.这通常称为延迟初始化.在对象创建开销大且不需要每次 ...

  7. php不支持多线程怎么办

    PHP 默认并不支持多线程,要使用多线程需要安装 pthread 扩展,而要安装 pthread 扩展,必须使用 --enable-maintainer-zts 参数重新编译 PHP,这个参数是指定编 ...

  8. indexOf与includes的区别

    indexOf与includes的区别:https://blog.csdn.net/gtLBTNq9mr3/article/details/78700118 includes和indexOf相比较:相 ...

  9. 线段树(two value)与树状数组(RMQ算法st表)

    士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比 ...

  10. ajax请求超时解决方案

    设置timeout的时间,通过检测complete时status的值判断请求是否超时,如果超时执行响应的操作. var ajaxTimeoutTest=$.ajax({ url:'',//请求地址 t ...