2019 杭电多校 10 1007

题目链接:HDU 6697

比赛链接:2019 Multi-University Training Contest 10

Problem Description

The closest pair of points problem is a well-known problem of computational geometry. In this problem, you are given \(n\) points in the Euclidean plane and you need to find a pair of points with the smallest distance between them.

Now, Claris, the brilliant one who has participated in programming contests for several years, is trying to solve a harder problem named the closest pair of segments problem, which also has a quite simple description as above.

However, the problem seems even too hard for Claris and she is asking you for help.

Now \(n\) segments are lying on the Euclidean plane, you are asked to pick two different segments and then pick a point on the two segments respectively to minimize the distance between these two points.

For simplicity, any two given segments share no common point, and you don't need to show her the two chosen points, but the distance between them instead.

Input

The input contains several test cases, and the first line contains a single integer \(T (1\le T\le 200)\), the number of test cases.

For each test case, the first line contains one integer \(n (2\le n\le 10000)\), which is the number of segments on the Euclidean plane.

The following \(n\) lines describe all the segments lying on the Euclidean plane, the \(i\)-th of which contains for integers \(x_1,y_1,x_2\) and \(y_2\) describing a segment that connects \((x_1,y_1)\) and \((x_2,y_2)\), where \(−10^9\le x_1,y_1,x_2,y_2\le 10^9\).

It's guaranteed that the two endpoints of each segment do not coincide, any two given segments do not intersect with each other in each test case, and no more than \(20\) test cases satisfy \(n>1000\).

Output

For each test case, output a line containing a single real number for the answer to the closest pair of segments problem with an absolute or relative error of at most \(10^{−6}\).

Precisely speaking, assume that your answer is \(a\) and and the jury's answer is \(b\), your answer will be considered correct if and only if \(\frac{|a−b|}{max\{1,|b|\}}\le 10^{−6}\).

Sample Input

2
2
0 1 1 2
1 1 2 0
2
0 1 1 2
2 2 3 1

Sample Output

0.707106781187
1.000000000000

Solution

题意

类似于计算几何中的最近点对问题,本题求的是最近线段对。

给定 \(n\) 条线段,求出最近线段对之间的距离。

题解

暴力 剪枝

比赛时我用了三角剖分,结果超时了。

赛后补题时看到了这篇博客:HDU 6697 Closest Pair of Segments(线段距离)

原来暴力加上剪枝就能过。思路是这样的:

首先将线段的左侧端点按照横坐标为第一关键字,纵坐标为第二关键字排序。然后暴力找所有线段对,维护最小值 \(ans\)。如果当前查询的线段对中,右侧线段的左端点与左侧线段的右端点的横坐标差值大于 \(ans\) 时,就不用再找更右侧的直线了。这样剪枝能大大减少时间复杂度。

时限给了 20s,大概 1.3s 就能跑完。

题解看不懂

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10; inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
} db dis(const Point a) {
return sqrt(dis2(a));
} db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
} };
typedef Point Vector; struct Line {
Point s, e;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
void input() {
s.input();
e.input();
}
db length() {
return s.dis(e);
} // 点到直线的距离
db point_to_line(Point p) {
return fabs((p - s).cross(e - s) / length());
} // 点到线段的距离
db point_to_seg(Point p) {
if(dcmp((p - s).dot((e - s))) < 0 || dcmp((p - e).dot((s - e))) < 0) {
return min(p.dis(s), p.dis(e));
}
return point_to_line(p);
} // 线段到线段的距离
db seg_to_seg(Line l) {
return min(min(point_to_seg(l.s), point_to_seg(l.e)), min(l.point_to_seg(s), l.point_to_seg(e)));
}
}; Line l[maxn]; int cmp(Line l1, Line l2) {
return l1.s < l2.s;
} int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
for(int i = 0; i < n; ++i) {
l[i].input();
if(l[i].e < l[i].s) swap(l[i].s, l[i].e);
}
sort(l, l + n, cmp);
double ans = 1e10;
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
// 剪枝部分
if(dcmp((l[j].s.x - l[i].e.x) - ans) > 0) {
break;
}
ans = min(ans, l[i].seg_to_seg(l[j])); // 更新最小值
}
}
printf("%.12lf\n", ans);
}
return 0;
}

HDU 6697 Closest Pair of Segments (计算几何 暴力)的更多相关文章

  1. HDU 6697 Closest Pair of Segments(线段距离)

    首先最容易想到的就是N2暴力枚举所有线段去找最小值,但是这样会做了许多无用功.我们可以先对线段排序,使得线段最左侧的端点按照x轴y轴排序,然后我们可以限定在这个线段的矩形框内的所有线段才有可能产生最小 ...

  2. UVA 10245 The Closest Pair Problem 最近点问题 分治算法

    题意,给出n个点的坐标,找出两点间最近的距离,如果小于10000就输出INFINITY. 纯暴力是会超时的,所以得另辟蹊径,用分治算法. 递归思路将点按坐标排序后,分成两块处理,最近的距离不是在两块中 ...

  3. 2.11 2D平面最近点对问题[closest pair problem]

    [本文链接] http://www.cnblogs.com/hellogiser/p/closest-pair-problem.html [题目] 给定平面上N个点的坐标,找出距离最近的两个点之间的距 ...

  4. HDU 5877 Weak Pair(弱点对)

    HDU 5877 Weak Pair(弱点对) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Jav ...

  5. UVA 10245 - The Closest Pair Problem

    Problem JThe Closest Pair ProblemInput: standard inputOutput: standard outputTime Limit: 8 secondsMe ...

  6. 树形DP+树状数组 HDU 5877 Weak Pair

    //树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...

  7. Codeforces Round #185 (Div. 2) C. The Closest Pair 构造

    C. The Closest Pair Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/312/p ...

  8. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  9. HDU 3267 Graph Game(博弈论+图论+暴力)

    题面传送门 题意: 有一棵 \(n\) 个节点的图 \(G\),R 和 B 两个人轮流操作,R 先操作. 每次操作 R 可以染红任意一条未染色的边,B 可以染蓝任意一条未染色的边 R 的目标是染成一棵 ...

随机推荐

  1. NIO浅析(二)

    一:前言 在(一中了解了NIO中的缓冲区和通道),通过本文章你会了解阻塞和非阻塞,选择器,管道 二:完成NIO通信的三要素 * 1.通道(Channel):负责连接* java.nio.channel ...

  2. 2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)

    题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...

  3. PAT甲级——A1152 GoogleRecruitment【20】

    In July 2004, Google posted on a giant billboard along Highway 101 in Silicon Valley (shown in the p ...

  4. 26-python基础-python3-global语句

    1-global 语句 如果需要在一个函数内修改全局变量,就使用 global 语句. 如果在函数的顶部有 global eggs 这样的代码,它就告诉 Python,“在这个函数中,eggs 指的是 ...

  5. 我爱Linux

    这道题卡了好久,题是一张图片,打开看到看提示以为是用哪个Linux命令处理,直到后来知道后面是python序列化文件的数据,将FF D9后保存出来,将序列化文件读出来写脚本把它画出来 import p ...

  6. navigator对象-了解

    navigator 对象包含有关浏览器的信息,它有很多属性,我们最常用的是 userAgent ,该属性可以返回由客户机发送服务器的 user-agent 头部的值 下面前段代码可以判断用户使用哪个终 ...

  7. 理解EntityFramework两个核心类型的职责 DbSet和D'bContext

    DbSet与DbContext是多对一的关系DbSet是实体对象的集合,提供了实现CRUD的相应方法DbContext封装与数据库和数据模型相关的功能,依据数据实体状态创建SQL命令,将数据更改保存到 ...

  8. Vuex白话教程第六讲:Vuex的管理员Module(实战篇)

    写在前面 这一讲是 Vuex 基础篇的最后一讲,也是最为复杂的一讲.如果按照官方来的话,对于新手可能有点难以接受,所以想了下,决定干脆多花点时间,用一个简单的例子来讲解,顺便也复习一下之前的知识点. ...

  9. spring framework三个版本的下载包区别

    docs:该文件夹下包含Spring的相关文档.开发指南及API参考文档:dist:该文件夹下包含Spring jar包.文档.项目等内容:schema:里面包含了Spring4所用到的xsd文件:

  10. HBase封装easy-hbase设计实现

    新增码云地址:https://gitee.com/hanmov5/mop-hbase-template 一.写在前面 业务架构用到HBase,但由于某些不可名状原因,没有用phoniex等上层工具,开 ...