我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小。

1、通过配置文件配置

通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小。
//设置Redis最大占用内存大小为100M
maxmemory 100mb
redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的。

2、通过命令修改

Redis支持运行时通过命令动态修改内存大小

//设置Redis最大占用内存大小为100M
127.0.0.1:6379> config set maxmemory 100mb
//获取设置的Redis能使用的最大内存大小
127.0.0.1:6379> config get maxmemory
如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存

Redis的内存淘汰

既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?
实际上Redis定义了几种策略用来处理这种情况:
  • noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
  • allkeys-lru:从所有key中使用LRU算法进行淘汰
  • volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
  • allkeys-random:从所有key中随机淘汰数据
  • volatile-random:从设置了过期时间的key中随机淘汰
  • volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰
当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误。

如何获取及设置内存淘汰策略

获取当前内存淘汰策略:
127.0.0.1:6379> config get maxmemory-policy
通过配置文件设置淘汰策略(修改redis.conf文件):
maxmemory-policy allkeys-lru
通过命令修改淘汰策略:
127.0.0.1:6379> config set maxmemory-policy allkeys-lru

LRU算法

什么是LRU?

上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?
LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。
这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。
使用java实现一个简单的LRU算法。
public class LRUCache<k, v> {
    //容量
    private int capacity;
    //当前有多少节点的统计
    private int count;
    //缓存节点
    private Map<k, Node<k, v>> nodeMap;
    private Node<k, v> head;
    private Node<k, v> tail;     public LRUCache(int capacity) {
        if (capacity < 1) {
            throw new IllegalArgumentException(String.valueOf(capacity));
        }
        this.capacity = capacity;
        this.nodeMap = new HashMap<>();
        //初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码
        Node headNode = new Node(null, null);
        Node tailNode = new Node(null, null);
        headNode.next = tailNode;
        tailNode.pre = headNode;
        this.head = headNode;
        this.tail = tailNode;
    }     public void put(k key, v value) {
        Node<k, v> node = nodeMap.get(key);
        if (node == null) {
            if (count >= capacity) {
                //先移除一个节点
                removeNode();
            }
            node = new Node<>(key, value);
            //添加节点
            addNode(node);
        } else {
            //移动节点到头节点
            moveNodeToHead(node);
        }
    }     public Node<k, v> get(k key) {
        Node<k, v> node = nodeMap.get(key);
        if (node != null) {
            moveNodeToHead(node);
        }
        return node;
    }     private void removeNode() {
        Node node = tail.pre;
        //从链表里面移除
        removeFromList(node);
        nodeMap.remove(node.key);
        count--;
    }     private void removeFromList(Node<k, v> node) {
        Node pre = node.pre;
        Node next = node.next;         pre.next = next;
        next.pre = pre;         node.next = null;
        node.pre = null;
    }     private void addNode(Node<k, v> node) {
        //添加节点到头部
        addToHead(node);
        nodeMap.put(node.key, node);
        count++;
    }     private void addToHead(Node<k, v> node) {
        Node next = head.next;
        next.pre = node;
        node.next = next;
        node.pre = head;
        head.next = node;
    }     public void moveNodeToHead(Node<k, v> node) {
        //从链表里面移除
        removeFromList(node);
        //添加节点到头部
        addToHead(node);
    }     class Node<k, v> {
        k key;
        v value;
        Node pre;
        Node next;         public Node(k key, v value) {
            this.key = key;
            this.value = value;
        }
    }
}

上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。,这篇了解下。

LRU在Redis中的实现

近似LRU算法

Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。
可以通过maxmemory-samples参数修改采样数量:
例:maxmemory-samples 10
maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法
Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。

Redis3.0对近似LRU的优化

Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中,随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。
当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。

LRU算法的对比

我们可以通过一个实验对比各LRU算法的准确率,先往Redis里面添加一定数量的数据n,使Redis可用内存用完,再往Redis里面添加n/2的新数据,这个时候就需要淘汰掉一部分的数据,如果按照严格的LRU算法,应该淘汰掉的是最先加入的n/2的数据。
生成如下各LRU算法的对比图
图片来源:segmentfault.com/a/1190000017555834
你可以看到图中有三种不同颜色的点:
  • 浅灰色是被淘汰的数据
  • 灰色是没有被淘汰掉的老数据
  • 绿色是新加入的数据
我们能看到Redis3.0采样数是10生成的图最接近于严格的LRU。而同样使用5个采样数,Redis3.0也要优于Redis2.8。

LFU算法

LFU算法是Redis4.0里面新加的一种淘汰策略。它的全称是Least Frequently Used,它的核心思想是根据key的最近被访问的频率进行淘汰,很少被访问的优先被淘汰,被访问的多的则被留下来。
LFU算法能更好的表示一个key被访问的热度。假如你使用的是LRU算法,一个key很久没有被访问到,只刚刚是偶尔被访问了一次,那么它就被认为是热点数据,不会被淘汰,而有些key将来是很有可能被访问到的则被淘汰了。如果使用LFU算法则不会出现这种情况,因为使用一次并不会使一个key成为热点数据。
LFU一共有两种策略:
  • volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key
  • allkeys-lfu:在所有的key中使用LFU算法淘汰数据
设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错。

问题

最后留一个小问题,可能有的人注意到了,我在文中并没有解释为什么Redis使用近似LRU算法而不使用准确的LRU算法,可以在评论区给出你的答案,大家一起讨论学习。

参考文献

https://redis.io/topics/lru-cachehttps://segmentfault.com/a/1190000016743562https://segmentfault.com/a/1190000017555834

作者:千山qiansan

来源:juejin.im/post/5d674ac2e51d4557ca7fdd70

- END -
推荐阅读:

1、

2、

3、

4、

5、

关注Java技术栈公众号在后台回复:Java,可获取一份栈长整理的最新Java 技术干货。

点击「阅读原文」和栈长学更多~

Redis 内存满了怎么办……的更多相关文章

  1. Redis内存满了怎么办(新年快乐)

    Redis内存满了怎么办(新年快乐) 入我相思门,知我相思苦. 长相思兮长相忆,短相思兮无穷极. 一.配置文件 Redis长期使用或者不设置过期时间,导致内存爆满或不足,可以到Redis的配置文件re ...

  2. redis内存满了怎么办?

    redis最为缓存数据库,一般用于存储缓存数据,用于缓解数据库压力,但是缓存太多,内存满了怎么办呢.一般有以下几种方法 一.增加内存 redis存储于内存中,数据太多,占用太多内存,那么增加内存就是最 ...

  3. Redis 内存满了怎么办?这样设置才正确!

    上回在<Redis 数据过期了会被立马删除么?>说到如果过期的数据太多,定时删除无法删除完全(每次删除完过期的 key 还是超过 25%),同时这些 key 再也不会被客户端请求,就无法走 ...

  4. Redis内存满了的几种解决方法(内存淘汰策略与Redis集群)

    1,增加内存: 2,使用内存淘汰策略. 3,Redis集群. 重点介绍下23: 第2点: 我们知道,redis设置配置文件的maxmemory参数,可以控制其最大可用内存大小(字节). 那么当所需内存 ...

  5. Redis 内存满了怎么办? Redis的内存淘汰策略

    https://juejin.im/post/5d674ac2e51d4557ca7fdd70 Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限, ...

  6. LRU工程实现源码(一):Redis 内存淘汰策略

    目录 内存淘汰是什么?什么时候内存淘汰 内存淘汰策略 Redis中的LRU淘汰算法 源码剖析 第一步:什么时候开始淘汰key 配置读取 检查时机 getMaxmemoryState 第二步:淘汰哪些k ...

  7. Redis内存使用优化与存储

    抄自http://www.infoq.com/cn/articles/tq-redis-memory-usage-optimization-storage 本文将对Redis的常见数据类型的使用场景以 ...

  8. Redis内存存储结构分析

    1 Redis 内存存储结构 本文是基于 Redis-v2.2.4 版本进行分析. 1.1 Redis 内存存储总体结构 Redis 是支持多key-value数据库(表)的,并用 RedisDb 来 ...

  9. 为什么Redis内存不宜过大

    redis这个内存数据库,它的高性能.稳定性都是不用怀疑的,但我们塞进redis的数据过多,内存过大,那如果出问题,那它可能会带给我们的就是灾难性. 作者:程超来源:网络|2016-05-23 09: ...

随机推荐

  1. 【BZOJ3684】大朋友和多叉树(拉格朗日反演)

    题目链接 题意 求满足如下条件的多叉树个数: 1.每一个点的儿子个数在给定的集合 \(S\) 内 2.总的叶子节点树为 \(s\) 儿子之间有顺序关系,但节点是没有标号的. Sol 拉格朗日反演板子题 ...

  2. JAVA笔记13-异常处理Exception

    掌握:一个图(分类).五个关键字(try catch finally throws throw) 一.概念 定义: 异常指的是运行期出现的错误(如除0溢出,空指针,数组/字符串下标越界,所要读取的文件 ...

  3. electron打包成.exe后限制只启动一个应用

    注意:这是2.x的文档 const {app} = require('electron') let myWindow = null const shouldQuit = app.makeSingleI ...

  4. 导入本地Excel到DataSet中

    /// <summary> /// 导入本地Excel到DataSet中 /// </summary> /// <param name="strFileSour ...

  5. nmon监控使用

    1.上传nmon_linux_x86_64文件到服务器 2.修改文件权限chmod 775 nmon_linux_x86_64 3.压测时需要执行以下命令监控服务器./nmon_linux_x86_6 ...

  6. 1222/2516. Kup

    题目描述 Description 首先你们得承认今天的题目很短很简洁... 然后,你们还得承认接下来这个题目的描述更加简洁!!! Task:给出一个N*N(1≤N≤2000)的矩阵,还给出一个整数K. ...

  7. sh_01_九九乘法表

    sh_01_九九乘法表 def multiple_table(): # 1. 打印 9 行小星星 row = 1 while row <= 9: col = 1 while col <= ...

  8. 【转】Django之Model层的F对象,Q对象以及聚合函数

    转自:https://blog.csdn.net/wsy_666/article/details/86692050 一.F对象: 作用:用于处理类属性(即model的某个列数据),类属性之间的比较.使 ...

  9. Python3学习笔记(五):列表和元组

    一.列表 列表是可变的--可以改变列表的内容 list函数可以把各种类型的序列拆分列表 >>> list('Hello') ['H', 'e', 'l', 'l', 'o'] 二.列 ...

  10. 如何用CSS3画出懂你的3D魔方?

    作者:首席填坑官∙苏南公众号:honeyBadger8,群:912594095,本文原创,著作权归作者所有,转载请注明原链接及出处. 前言 最近在写<每周动画点点系列>文章,上一期分享了& ...