题目描述

$visit\text{_}world$发现有下优化问题可以用很平凡的技巧解决,所以他给你分享了这样一道题:
现在有长度为$N$的整数序列$\{ a_i\}$,你需要从中选出$K$个不想叫的连续子区间(可以存在元素不被选),从左到右记它们的和为$s_1,s_2,...,s_k$,我们的优化目标是最大化下述和式:
$$\sum \limits_{i=1}^{k-1}|s_i-s_{i+1}|$$
你只需要输出这个最大的和即可。


输入格式

第一行两个整数$N,K$,意义如上。
接下来一行$N$个整数,第$i$个数表示$a_i$,保证有$|a_i|\leqslant 10^4$。


输出格式

输出一行一个整数,表示答案。


样例

样例输入:

5 3
5 2 4 3 1

样例输出:

12


数据范围与提示

样例解释:

选择$(5),(2,4,3),(1)$三个子段,$|5-9|+|9-1|=12$

数据范围:

对于全部的测试数据,保证$N\leqslant 3\times 10^4,K\leqslant \min(N,200)$。
$\bullet$子任务$1$($10$分):$K\leqslant 3$。
$\bullet$子任务$2$($30$分):$N\leqslant 400,K\leqslant 50$。
$\bullet$子任务$3$($20$分):$N\leqslant 10^3,K\leqslant 100$。
$\bullet$子任务$4$($40$分):无特殊限制。


题解

利用贪心思想,这$k$个序列一定是一高一低的,不可能连续三个及以上持续上升或下降。

对于高的序列,其贡献为$+2$;对于低的序列,其贡献为$-2$;而中间也会有一些并不选的状态,其贡献为$0$,而对于这些状态,其接下来会有高或低的序列,为了区分它们,不妨将其称为上升状态$or$下降状态。

考虑$DP$,设$dp[i][j][0/1/2/3]$表示前$i$个数,分成了$j$段,当前状态是高、低、上升、下降状态。

状态转移很简单,需要注意的是对于边界的处理,即$j=1$和$j=K$的情况。

时间复杂度:$\Theta(NK)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int N,K;
int w[30001];
int dp[30001][201][4];
int main()
{
scanf("%d%d",&N,&K);
for(int i=1;i<=N;i++)
scanf("%d",&w[i]);
memset(dp,-0x3f,sizeof(dp));
for(int i=1;i<=N;i++)dp[i][0][0]=dp[i][0][1]=dp[i][0][2]=dp[i][0][3]=0;
dp[0][0][0]=dp[0][0][1]=dp[0][0][2]=dp[0][0][3]=0;
for(int i=1;i<=N;i++)
{
dp[i][1][0]=max(dp[i-1][1][0],dp[i-1][0][2])+w[i];
dp[i][1][1]=max(dp[i-1][1][1],dp[i-1][0][3])-w[i];
dp[i][1][2]=max(dp[i-1][1][2],dp[i][1][1]);
dp[i][1][3]=max(dp[i-1][1][3],dp[i][1][0]);
dp[i][K][0]=max(dp[i-1][K][0],dp[i-1][K-1][2])+w[i];
dp[i][K][1]=max(dp[i-1][K][1],dp[i-1][K-1][3])-w[i];
dp[i][K][2]=max(dp[i-1][K][2],dp[i][K][1]);
dp[i][K][3]=max(dp[i-1][K][3],dp[i][K][0]);
for(int j=2;j<K;j++)
{
dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j-1][2])+2*w[i];
dp[i][j][1]=max(dp[i-1][j][1],dp[i-1][j-1][3])-2*w[i];
dp[i][j][2]=max(dp[i-1][j][2],max(dp[i][j][1],dp[i-1][j-1][2]));
dp[i][j][3]=max(dp[i-1][j][3],max(dp[i][j][0],dp[i-1][j-1][3]));
}
}
printf("%d",max(dp[N][K][2],dp[N][K][3]));
return 0;
}

rp++

[CSP-S模拟测试]:优化(贪心+DP)的更多相关文章

  1. [CSP-S模拟测试]:B(DP+数学)

    题目传送门(内部题45) 输入格式 第一行$3$个整数$n,m,P$.第二行$m$个整数,表示$m$次询问. 输出格式 一行$m$个整数表示答案. 样例 样例输入1: 2 4 40 1 2 3 样例输 ...

  2. [CSP-S模拟测试]:y(DP+bitset)

    题目背景 $\frac{1}{4}$遇到了一道水题,叕完全不会做,于是去请教小$D$.小$D$懒得理$\frac{1}{4}$,直接就离开了.于是,$\frac{1}{4}$只好来问你,这道题是这样的 ...

  3. [CSP-S模拟测试]:施工(DP+单调栈+前缀和)

    题目描述 小$Y$家门前有一条街道,街道上顺序排列着$n$幢建筑,其中左起第$i$幢建筑的高度为$h_i$.小$Y$定义街道的不美观度为所有相邻建筑高度差的绝对值之和乘上常数$c$,为了改善街道环境, ...

  4. [CSP-S模拟测试]:biology(DP)

    题目传送门(内部题23) 输入格式 第一行有$2$个整数$n,m$.接下来有$n$行,每行$m$个整数,表示$a$数组.接下来有$n$行,每行$m$个整数,表示$b$数组. 输出格式 一行一个整数表示 ...

  5. [CSP-S模拟测试]:F(DP+线段树)

    题目传送门(内部题49) 输入格式 第一行四个整数$n,q,a,b$.接下来$n$行每行一个整数$p_i$. 输出格式 一行一个整数表示答案. 样例 样例输入: 10 3 3 7 样例输出: 数据范围 ...

  6. 5.12 省选模拟赛 T2 贪心 dp 搜索 差分

    LINK:T2 这题感觉很套路 但是不会写. 区间操作 显然直接使用dp不太行 直接爆搜也不太行复杂度太高. 容易想到差分 由于使得整个序列都为0 那么第一个数也要i差分前一个数 强行加一个0 然后 ...

  7. [CSP-S模拟测试]:蛇(DP+构造+哈希)

    题目传送门(内部题140) 输入格式 前两行有两个长度相同的字符串,描述林先森花园上的字母. 第三行一个字符串$S$. 输出格式 输出一行一个整数,表示有多少种可能的蛇,对$10^9+7$取模. 样例 ...

  8. [CSP-S模拟测试]:最小值(DP+乱搞)

    题目背景 $Maxtir$更喜欢序列的最小值. 题目传送门(内部题128) 输入格式 第一行输入一个正整数$n$和四个整数$A,B,C,D$. 第二行输入$n$个整数,第$i$个数表示$a_i$. 输 ...

  9. [CSP-S模拟测试]:花(DP)

    题目传送门(内部题111) 输入格式 一个整数$T$,表示测试数据组数. 每组测试数据占一行,两个整数,分别表示$L$和$S$. 输出格式 对每组数据,输出一个整数表示答案. 样例 样例输入1: 13 ...

随机推荐

  1. MacOS 下文件读取问题

    使用Xcode编写C++程序可以直接使用fstream读写文件,代码如下: const char* path1 = [path UTF8String];string filename = path1; ...

  2. 声明一个LIst类型的数组

    ArrayList[] graphArrayList = new ArrayList[4]; for(int i=0;i<graphArrayList.length;i++){ graphArr ...

  3. Win10下编译OpenJDK8

    导航目录 Win10下编译OpenJDK8 相关参考文章 编译环境 编译前准备 1.安装 Visual Studio 2010 Professional 2. 准备OpenJDK8 3. 编译JDK环 ...

  4. 六、while循环

    案例1: do while 循环  很少用到. for循环和while循环用的最多.

  5. vue-搜索功能-实时监听搜索框的输入,N毫秒请求一次数据

    <template> <div class="search-box"> <input class="box" :placehold ...

  6. join 与 countdownlatch 的区别 扩展 栅栏 CyclicBarrier

    我们先看一个 小例子 , 使用 join 与CountDownSlatch 都可以完成 当1,2线程 完全结束后 3 线程 start 对比我们就能够知道 CountDownSlatch 比 JOIN ...

  7. Hibernate 最简单实例

    我从网上下载了 hibernate-release-4.3.0.Final.zip,解压缩,把/lib/required文件夹下的所有jar包加入到eclipse项目中的Referenced Libr ...

  8. java中将jsonObject字符串转化为Map对象

    java中将jsonObject字符串转化为Map对象 1.我们这里使用json-lib包进行转换,可在http://json-lib.sourceforge.net/下载依赖于下面的jar包: ja ...

  9. 总结linux内核的一些参数优化

    sysctl命令被用于在动态地修改内核的运行参数,可用的内核参数在目录/proc/sys中. 它包含一些TCP/IP堆栈和虚拟内存系统的高级选项, 用sysctl可以读取设置超过五百个系统变量. sy ...

  10. C#实现Base64处理加解密

    using System;using System.Text; namespace Common{    /// <summary>    /// 实现Base64加密解密    ///  ...