Acwing-282-石子合并(区间DP)
链接:
https://www.acwing.com/problem/content/284/
题意:
设有N堆石子排成一排,其编号为1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;
如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
思路:
区间DP模板题, 枚举区间长度.
代码:
#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
int Dp[500][500];
int a[500], Sum[500];
int n;
int main()
{
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]), Sum[i] = Sum[i-1]+a[i];
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= n;j++)
{
Dp[i][j] = INF;
if (i == j)
Dp[i][j] = 0;
}
}
for (int len = 2;len <= n;len++)
{
for (int l = 1;l <= n-len+1;l++)
{
int r = len+l-1;
for (int k = l;k < r;k++)
{
Dp[l][r] = min(Dp[l][r], Dp[l][k]+Dp[k+1][r]+Sum[r]-Sum[l-1]);
}
}
}
printf("%d\n", Dp[1][n]);
return 0;
}
Acwing-282-石子合并(区间DP)的更多相关文章
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 石子合并 区间dp模板
题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- 石子合并 区间DP模板题
题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...
- 洛谷 P1080 石子合并 ( 区间DP )
题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...
- 石子合并——区间dp
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- HRBUST - 1818 石子合并 区间dp入门
有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...
- HDU 3506 (环形石子合并)区间dp+四边形优化
Monkey Party Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Tot ...
- P1880 [NOI1995]石子合并 区间dp+拆环成链
思路 :一道经典的区间dp 唯一不同的时候 终点和起点相连 所以要拆环成链 只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...
随机推荐
- Linux常用命令详解(1)
基础命令: ls man pwd cd mkdir echo touch cp mv rm rmdir cat more less head tail clear poweroff reboot 命令 ...
- 学习前端D1
第一次写博客,有些小激动,以前写学习的记录都是在有道云笔记上写的,在博客园上更多的是膜拜大佬.偷师学艺.前段时间,我和朋友闲聊时,知道用博客每天写知识会提高学习的热情,这感情好呀,于是乎,今天,我依旧 ...
- 谈一谈 Normalize.css
Normalize.css是一种CSS reset的替代方案.它在默认的HTML元素样式上提供了跨浏览器的高度一致性.相比于传统的CSS reset,Normalize.css是一种现代的.为HTML ...
- Elasticsearch-日期类型
Elasticsearch-日期类型 date类型用于存储日期和时间.它是这样运作的:通常提供一个表示日期的字符串,例如2019-06-25T22:47.然后,ES解析这个字符串,然后将其作为long ...
- 【转贴】Windows virtio 驱动
Windows virtio 驱动 https://blog.51cto.com/dangzhiqiang/1833615 去年去中建总部的时候用过. 发现很多搞openstack的人都不清楚这一块的 ...
- [转贴]Linux内核LTS长期支持版生命周期
Linux内核LTS长期支持版生命周期 https://blog.51cto.com/dangzhiqiang/1894026 搞不懂长期支持版本的特点和区别. 党志强关注0人评论4371人阅读201 ...
- Eclipse myeclipse下配置HanLP的教程
一.说明 博主的配置 1:window10 2:myeclipse 3:jdk1.8 备注:文章分享自贾继康的博客,博客使用的hanlp是1.6.8的版本.大家可以去下载最新的1.7版本了,也比较推荐 ...
- Centos 7 下Gitlab 自启动设置
禁止 Gitlab 开机自启动: systemctl disable gitlab-runsvdir.service 启用 Gitlab 开机自启动: systemctl enable gitlab- ...
- 什么是分布式关系型数据库服务 DRDS
DRDS 产品简介 DRDS 是一款基于 MySQL 存储.采用分库分表技术进行水平扩展的分布式 OLTP 数据库服务产品,支持 RDS for MySQL 以及 POLARDB for MySQL, ...
- node工具之http-proxy-middleware
简介 一个轻松的配置代理服务器的中间件,让Node.js代理变得简单 url路径 foo://example.com:8042/over/there?name=ferret#nose \_/ \___ ...