链接:

https://www.acwing.com/problem/content/284/

题意:

设有N堆石子排成一排,其编号为1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;

如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

思路:

区间DP模板题, 枚举区间长度.

代码:

#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9; int Dp[500][500];
int a[500], Sum[500];
int n; int main()
{
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]), Sum[i] = Sum[i-1]+a[i];
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= n;j++)
{
Dp[i][j] = INF;
if (i == j)
Dp[i][j] = 0;
}
}
for (int len = 2;len <= n;len++)
{
for (int l = 1;l <= n-len+1;l++)
{
int r = len+l-1;
for (int k = l;k < r;k++)
{
Dp[l][r] = min(Dp[l][r], Dp[l][k]+Dp[k+1][r]+Sum[r]-Sum[l-1]);
}
}
}
printf("%d\n", Dp[1][n]); return 0;
}

Acwing-282-石子合并(区间DP)的更多相关文章

  1. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  2. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  3. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  4. 石子合并 区间DP模板题

    题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...

  5. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  6. 石子合并——区间dp

    石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...

  7. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  8. HRBUST - 1818 石子合并 区间dp入门

    有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...

  9. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

  10. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

随机推荐

  1. C学习笔记-基础数据结构与算法

    数据结构 数据(data)是对客观事物符号表示,在计算机中是指所有能输入的计算机并被计算机程序处理的数据总称. 数据元素(data element)是数据的基本单位,在计算机中通常做为一个整体进行处理 ...

  2. (转)shell脚本使用curl获取访问网站的状态码

    curl -I -m 10 -o /dev/null -s -w %{http_code} www.baidu.com -I 仅测试HTTP头-m 10 最多查询10s-o /dev/null 屏蔽原 ...

  3. Jira和confluence备份

    参考: https://www.cnblogs.com/kevingrace/p/8862531.html JIRA备份和还原:  #Jira默认会打开自动备份的功能,备份路径为: /data/atl ...

  4. Redundant Connection

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  5. 医院医疗类报表免费用,提反馈,还能赢取P30!

    医院医疗类报表免费用,提反馈,还能赢取P30! “葡萄城报表模板库是一款免费的报表制作.学习和参考工具,包含了超过 200 张高质量报表模板,涵盖了 16 大行业和 50 多种报表类型,为 30 余万 ...

  6. springboot笔记-使用JSP

    Spring Boot 项目中使用 JSP: 项目结构:需要添加webapp文件夹用来存放目录 jsp 文件 spring-boot-jsp +-src +- main +- java +- reso ...

  7. 2019CCPC-江西省赛 -A Cotree (树形DP,求树上一点到其他点的距离之和)

    我是傻逼我是傻逼 #include<bits/stdc++.h> using namespace std; const int maxn=4e5+50; typedef long long ...

  8. vue : 无法加载文件 C:\Users\lihongjie\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。有关详细信息,请参阅 htt ps:/go.microsoft.com/fwlink/?LinkID=135170 中的 about_Execution_Policies。 所在位置 行:1 字符: 1 + vue init webpack vue_p

    以管理员方式打开powershell 运行命令:set-ExecutionPolicy RemoteSigned 出现: 执行策略更改执行策略可帮助你防止执行不信任的脚本.更改执行策略可能会产生安全风 ...

  9. python_0基础开始_day13

    第十三节 一,匿名函数 匿名函数 == 一行函数 lambda == def == 关键字 函数体中存放的是代码 生成器体中存放的也是代码 就是yield导致函数和生成器的结果不统一 lambda x ...

  10. 仿优酷项目—orm

    仿优酷项目 一.ORM介绍 对象关系映射,把数据库中的表数据(表名.表记录.字段)全部映射到python中. ​ mysql: python: ​ 表名 ---->类名 ​ 记录 ----> ...