Java8内存模型—永久代(PermGen)和元空间(Metaspace)

一、JVM 内存模型

  根据 JVM 规范,JVM 内存共分为虚拟机栈、堆、方法区、程序计数器、本地方法栈五个部分。

    1、虚拟机栈:每个线程有一个私有的栈,随着线程的创建而创建。栈里面存着的是一种叫“栈帧”的东西,每个方法会创建一个栈帧,栈帧中存放了局部变量表(基本数据类型和对象引用)、操作数栈、方法出口等信息。栈的大小可以固定也可以动态扩展。当栈调用深度大于JVM所允许的范围,会抛出StackOverflowError的错误,不过这个深度范围不是一个恒定的值,我们通过下面这段程序可以测试一下这个结果:

栈溢出测试源码

package com.paddx.test.memory;

public class StackErrorMock {

    private static int index = 1;

    public void call(){

        index++;

        call();

    }

    public static void main(String[] args) {

        StackErrorMock mock = new StackErrorMock();

        try {

          mock.call();

        }catch (Throwable e){

            System.out.println("Stack deep : "+index);

            e.printStackTrace();

        }

    }

}  

运行三次,可以看出每次栈的深度都是不一样的,输出结果如下。

  至于红色框里的值是怎么出来的,就需要深入到 JVM 的源码中才能探讨,这里不作详细阐述。

  虚拟机栈除了上述错误外,还有另一种错误,那就是当申请不到空间时,会抛出 OutOfMemoryError。这里有一个小细节需要注意,catch 捕获的是 Throwable,而不是 Exception。因为 StackOverflowError 和 OutOfMemoryError 都不属于 Exception 的子类。

2.本地方法栈:

  这部分主要与虚拟机用到的 Native 方法相关,一般情况下, Java 应用程序员并不需要关心这部分的内容。

3.PC 寄存器:

  PC 寄存器,也叫程序计数器。JVM支持多个线程同时运行,每个线程都有自己的程序计数器。倘若当前执行的是 JVM 的方法,则该寄存器中保存当前执行指令的地址;倘若执行的是native 方法,则PC寄存器中为空。

4.堆

  堆内存是 JVM 所有线程共享的部分,在虚拟机启动的时候就已经创建。所有的对象和数组都在堆上进行分配。这部分空间可通过 GC 进行回收。当申请不到空间时会抛出 OutOfMemoryError。下面我们简单的模拟一个堆内存溢出的情况:

package com.paddx.test.memory;

import java.util.ArrayList;

import java.util.List;

public class HeapOomMock {

    public static void main(String[] args) {

        List<byte[]> list = new ArrayList<byte[]>();

        int i = 0;

        boolean flag = true;

        while (flag){

            try {

                i++;

                list.add(new byte[1024 1024]);//每次增加一个1M大小的数组对象

            }catch (Throwable e){

                e.printStackTrace();

                flag = false;

                System.out.println("count="+i);//记录运行的次数

            }

        }

    }

}

代码段 2

  运行上述代码,输出结果如下:  

  

  注意,这里我指定了堆内存的大小为16M,所以这个地方显示的count=14(这个数字不是固定的),至于为什么会是14或其他数字,需要根据 GC 日志来判断,具体原因会在下篇文章中给大家解释。

5.方法区:

  方法区也是所有线程共享。主要用于存储类的信息、常量池、方法数据、方法代码等。方法区逻辑上属于堆的一部分,但是为了与堆进行区分,通常又叫“非堆”。 关于方法区内存溢出的问题会在下文中详细探讨。

二、PermGen(永久代)

  绝大部分 Java 程序员应该都见过 "java.lang.OutOfMemoryError: PermGen space "这个异常。这里的 “PermGen space”其实指的就是方法区。不过方法区和“PermGen space”又有着本质的区别。前者是 JVM 的规范,而后者则是 JVM 规范的一种实现,并且只有 HotSpot 才有 “PermGen space”,而对于其他类型的虚拟机,如 JRockit(Oracle)、J9(IBM) 并没有“PermGen space”。由于方法区主要存储类的相关信息,所以对于动态生成类的情况比较容易出现永久代的内存溢出。最典型的场景就是,在 jsp 页面比较多的情况,容易出现永久代内存溢出。我们现在通过动态生成类来模拟 “PermGen space”的内存溢出:

package com.paddx.test.memory;

import java.io.File;

import java.net.URL;

import java.net.URLClassLoader;

import java.util.ArrayList;

import java.util.List;

public class PermGenOomMock{

    public static void main(String[] args) {

        URL url = null;

        List<ClassLoader> classLoaderList = new ArrayList<ClassLoader>();

        try {

            url = new File("/tmp").toURI().toURL();

            URL[] urls = {url};

            while (true){

                ClassLoader loader = new URLClassLoader(urls);

                classLoaderList.add(loader);

                loader.loadClass("com.paddx.test.memory.Test");

            }

        catch (Exception e) {

            e.printStackTrace();

        }

    }

}

代码段 4

运行结果如下:

  本例中使用的 JDK 版本是 1.7,指定的 PermGen 区的大小为 8M。通过每次生成不同URLClassLoader对象来加载Test类,从而生成不同的类对象,这样就能看到我们熟悉的 "java.lang.OutOfMemoryError: PermGen space " 异常了。这里之所以采用 JDK 1.7,是因为在 JDK 1.8 中, HotSpot 已经没有 “PermGen space”这个区间了,取而代之是一个叫做 Metaspace(元空间) 的东西。下面我们就来看看 Metaspace 与 PermGen space 的区别。

三、Metaspace(元空间)

  其实,移除永久代的工作从JDK1.7就开始了。JDK1.7中,存储在永久代的部分数据就已经转移到了Java Heap或者是 Native Heap。但永久代仍存在于JDK1.7中,并没完全移除,譬如符号引用(Symbols)转移到了native heap;字面量(interned strings)转移到了java heap;类的静态变量(class statics)转移到了java heap。我们可以通过一段程序来比较 JDK 1.6 与 JDK 1.7及 JDK 1.8 的区别,以字符串常量为例:

package com.paddx.test.memory;

import java.util.ArrayList;

import java.util.List;

public class StringOomMock {

    static  String base = "string";

    public  static void main(String[] args) {

        List<String> list = new ArrayList<String>();

        for (int i=0;i< Integer.MAX_VALUE;i++){

            String str = base + base;

            base = str;

            list.add(str.intern());

        }

    }

}

  这段程序以2的指数级不断的生成新的字符串,这样可以比较快速的消耗内存。我们通过 JDK 1.6、JDK 1.7 和 JDK 1.8 分别运行:

JDK 1.6 的运行结果:

JDK 1.7的运行结果:

JDK 1.8的运行结果:

  从上述结果可以看出,JDK 1.6下,会出现“PermGen Space”的内存溢出,而在 JDK 1.7和 JDK 1.8 中,会出现堆内存溢出,并且 JDK 1.8中 PermSize 和 MaxPermGen 已经无效。因此,可以大致验证 JDK 1.7 和 1.8 将字符串常量由永久代转移到堆中,并且 JDK 1.8 中已经不存在永久代的结论。现在我们看看元空间到底是一个什么东西?

  元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制,但可以通过以下参数来指定元空间的大小:

  -XX:MetaspaceSize,初始空间大小,达到该值就会触发垃圾收集进行类型卸载,同时GC会对该值进行调整:如果释放了大量的空间,就适当降低该值;如果释放了很少的空间,那么在不超过MaxMetaspaceSize时,适当提高该值。
  -XX:MaxMetaspaceSize,最大空间,默认是没有限制的。

  除了上面两个指定大小的选项以外,还有两个与 GC 相关的属性:
  -XX:MinMetaspaceFreeRatio,在GC之后,最小的Metaspace剩余空间容量的百分比,减少为分配空间所导致的垃圾收集
  -XX:MaxMetaspaceFreeRatio,在GC之后,最大的Metaspace剩余空间容量的百分比,减少为释放空间所导致的垃圾收集

现在我们在 JDK 8下重新运行一下代码段 4,不过这次不再指定 PermSize 和 MaxPermSize。而是指定 MetaSpaceSize 和 MaxMetaSpaceSize的大小。输出结果如下:

从输出结果,我们可以看出,这次不再出现永久代溢出,而是出现了元空间的溢出。

四、总结

  通过上面分析,大家应该大致了解了 JVM 的内存划分,也清楚了 JDK 8 中永久代向元空间的转换。不过大家应该都有一个疑问,就是为什么要做这个转换?所以,最后给大家总结以下几点原因:

  1、字符串存在永久代中,容易出现性能问题和内存溢出。

  2、类及方法的信息等比较难确定其大小,因此对于永久代的大小指定比较困难,太小容易出现永久代溢出,太大则容易导致老年代溢出。

  3、永久代会为 GC 带来不必要的复杂度,并且回收效率偏低。

  4、Oracle 可能会将HotSpot 与 JRockit 合二为一。

Java-技术专区-虚拟机系列-内存模型(JMM)的更多相关文章

  1. Java技术专区-虚拟机系列-虚拟机参数(常用)

    基础参数系类(内存分配) -server:一定要作为第一个参数,在多个CPU时性能佳 -Xmn:young generation的heap大小,一般设置为Xmx的3.4分之一-Xms:初始Heap大小 ...

  2. Java技术专区-虚拟机系列-类加载机制(类的初始化)

      类加载的生命周期:  加载 -> 验证 -> 准备 -> 解析 -> 初始化 -> 使用 -> 卸载       加载 -> 验证 -> 准备 -& ...

  3. Java技术专区-虚拟机系列-堆快照(获取)

    1.JVM-堆快照(Snapshot) 1.1 输出方式-获取hprof文件 启动参数配置OOM时触发打印堆快照 (1)tomcat启动方式添加参数 (添加环境变量) export JAVA_OPTS ...

  4. 多线程并发之java内存模型JMM

    多线程概念的引入是人类又一次有效压寨计算机的体现,而且这也是非常有必要的,因为一般运算过程中涉及到数据的读取,例如从磁盘.其他系统.数据库等,CPU的运算速度与数据读取速度有一个严重的不平衡,期间如果 ...

  5. 全面理解Java内存模型(JMM)及volatile关键字(转载)

    关联文章: 深入理解Java类型信息(Class对象)与反射机制 深入理解Java枚举类型(enum) 深入理解Java注解类型(@Annotation) 深入理解Java类加载器(ClassLoad ...

  6. 全面理解Java内存模型(JMM)及volatile关键字(转)

    原文地址:全面理解Java内存模型(JMM)及volatile关键字 关联文章: 深入理解Java类型信息(Class对象)与反射机制 深入理解Java枚举类型(enum) 深入理解Java注解类型( ...

  7. 对多线程java内存模型JMM

    多线程概念的引入体现了人类重新有效压力寨计算机.这是非常有必要的,由于所涉及的读数据的过程中的一般操作,如从磁盘.其他系统.数据库等,CPU计算速度和数据读取速度已经严重失衡.假设印刷过程中一个线程将 ...

  8. Java内存模型(JMM)详解

    在Java JVM系列文章中有朋友问为什么要JVM,Java虚拟机不是已经帮我们处理好了么?同样,学习Java内存模型也有同样的问题,为什么要学习Java内存模型.它们的答案是一致的:能够让我们更好的 ...

  9. Java内存模型JMM 高并发原子性可见性有序性简介 多线程中篇(十)

    JVM运行时内存结构回顾 在JVM相关的介绍中,有说到JAVA运行时的内存结构,简单回顾下 整体结构如下图所示,大致分为五大块 而对于方法区中的数据,是属于所有线程共享的数据结构 而对于虚拟机栈中数据 ...

随机推荐

  1. JVM系列(二) — Java垃圾收集介绍

    这篇文章主要从以下几个方面介绍垃圾收集的相关知识 一.判断对象是否已死 二.主流垃圾收集算法 三.内存分配与回收策略 本章节主要从以下几个思考点着手介绍垃圾回收的相关知识:哪些内存需要回收?什么时候回 ...

  2. NOIP2015D1T2 信息传递

    题目描述 有 n 个同学(编号为 1 到 n )正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为 i 的同学的信息传递对象是编号为 Ti​ 的同学. 游戏开始时,每人都只 ...

  3. python面试题之用列表解析式选出1-100中的奇数

    [i for i in range(100) if i % 2 != 0](其实这里有很多种做法,比如最简单的用切片就可以了 list(range(100))[1::2]都不需要列表解析式本文首发于p ...

  4. HDU 5159 Card( 计数 期望 )

    Card Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  5. kubernetes容器集群管理部署master节点组件

    集群部署获取k8s二进制包 [root@master ~]# wget https://dl.k8s.io/v1.15.0/kubernetes-server-linux-amd64.tar.gz [ ...

  6. postmortem报告【第二组】

    一.alpha阶段的经验教训 1.针对 进度规划不到位,任务完成速度慢 的问题,引入teambition规范任务管理,每周组会验收上一周任务,发布下一周任务,对各组员是否完成任务以及完成质量进行评价. ...

  7. [javascript模块化]require.js简单使用

    1.javascript模块规范 CommonJS 主要用于服务器端编程,比如node.js的模块系统,就是参照CommonJS规范实现的.在CommonJS中,有一个全局性方法require(),用 ...

  8. 【串线篇】SpringMvc框架乱码

    提交的数据可能有乱码: * 请求乱码: *      GET请求:改server.xml:在8080端口处URIEncoding="UTF-8" *      POST请求: * ...

  9. 24.循环栅栏 CyclicBarrier

    import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; /** * ...

  10. PHP+Redis 有序集合实现 24 小时排行榜实时更新

    基本介绍 Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员. 不同的是每个元素都会关联一个 double 类型的分数.redis 正是通过分数来为集合中的成员进行从 ...