New Year and Arbitrary Arrangement

time limit per test2 seconds

You are given three integers k, pa and pb.

You will construct a sequence with the following algorithm: Initially, start with the empty sequence. Each second, you do the following. With probability pa / (pa + pb), add 'a' to the end of the sequence. Otherwise (with probability pb / (pa + pb)), add 'b' to the end of the sequence.

You stop once there are at least k subsequences that form 'ab'. Determine the expected number of times 'ab' is a subsequence in the resulting sequence. It can be shown that this can be represented by P / Q, where P and Q are coprime integers, and . Print the value of .

大概就是说给定正整数k,pa,pb,初始有空字符串,每次有pa/(pa+pb)的可能在字符串末尾+a,有pb/(pa+pb)的可能在字符串末尾+b,求加到组成至少k对子序列“ab"时的期望子序列“ab”数。k<=1000,pa,pb<=10^6。

(连markdown我都懒得补在原文上了233)

Input

The first line will contain three integers integer k, pa, pb (1 ≤ k ≤ 1 000, 1 ≤ pa, pb ≤ 1 000 000).

Output

Print a single integer, the answer to the problem.

Examples

input

1 1 1

output

2

input

3 1 4

output

370000006

Note

The first sample, we will keep appending to our sequence until we get the subsequence 'ab' at least once. For instance, we get the sequence 'ab' with probability 1/4, 'bbab' with probability 1/16, and 'aab' with probability 1/8. Note, it's impossible for us to end with a sequence like 'aabab', since we would have stopped our algorithm once we had the prefix 'aab'.

The expected amount of times that 'ab' will occur across all valid sequences is 2.

For the second sample, the answer is equal to .

emmm.... 期望要倒推。。。。正无穷啥的拿等比数列消去。。。( $A^{inf}=0\ \ \ (0
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 3, mod = 1e9 + 7;
long long k, pa, pb, dp[maxn][maxn];
bool flag[maxn][maxn];

long long inv(int t)
{
int lin = mod - 2;
long long tmp = t, ret = 1;
while(lin){
if(lin & 1) ret = ret * tmp % mod;
tmp = tmp * tmp % mod;
lin >>= 1;
}
return ret;
}

long long workk(int a, int b)
{
if(flag[a][b]) return dp[a][b];
if(a + b >= k){
dp[a][b] = a + b + (pa * inv(pb) % mod);
flag[a][b] = true; return dp[a][b];
}
dp[a][b] = ((pa * inv(pa + pb) % mod) * workk(a + 1, b) % mod + (pb * inv(pa + pb) % mod) * workk(a, a + b) % mod) % mod;
flag[a][b] = true; return dp[a][b];
}

int main()
{
scanf("%I64d%I64d%I64d", &k, &pa, &pb);
printf("%I64d", workk(1, 0));
return 0;
}

Codeforces New Year and Arbitrary Arrangement的更多相关文章

  1. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  2. 【CodeForces】908 D. New Year and Arbitrary Arrangement

    [题目]Good Bye 2017 D. New Year and Arbitrary Arrangement [题意]给定正整数k,pa,pb,初始有空字符串,每次有pa/(pa+pb)的可能在字符 ...

  3. [CodeForces]908D New Year and Arbitrary Arrangement

    设状态f[i][j]表示有i个a,j个ab的期望 发现如果i+j>=k的话就再来一个b就行了. #include <iostream> #include <cstdio> ...

  4. Codeforces 908D New Year and Arbitrary Arrangement(概率DP,边界条件处理)

    题目链接  Goodbye 2017 Problem D 题意  一个字符串开始,每次有$\frac{pa}{pa+pb}$的概率在后面加一个a,$\frac{pb}{pa+pb}$的概率在后面加一个 ...

  5. Codeforces 908 D New Year and Arbitrary Arrangement

    Discription You are given three integers k, pa and pb. You will construct a sequence with the follow ...

  6. CF 908D New Year and Arbitrary Arrangement——期望dp

    题目:http://codeforces.com/contest/908/problem/D 注意是子序列.加一个a对ab个数无影响:加一个b使ab个数多出它前面的a那么多个.所以状态里记录有多少个a ...

  7. CF 908 D New Year and Arbitrary Arrangement —— 期望DP

    题目:http://codeforces.com/contest/908/problem/D 首先,设 f[i][j] 表示有 i 个 a,j 个 ab 组合的期望,A = pa / (pa + pb ...

  8. Good Bye 2017 D. New Year and Arbitrary Arrangement

    看了别人的题解 首先这题是一个dp dp[i][j] i是当前有多少个a j是当前有多少个ab子序列 dp[i][j] = dp[i+1][j]*Pa + dp[i][i+j]*Pb; i,j 时加一 ...

  9. CF908D Arbitrary Arrangement

    题目大意: 给定三个数\(k\) , \(p_a\) , \(p_b\) 每次有\(\frac{p_a}{p_a+p_b}\)的概率往后面添加一个'a' 每次有\(\frac{p_b}{p_a+p_b ...

随机推荐

  1. C# goto学习

    如下代码: ; goto b;//goto语句用来控制程序跳转到某个标签的位置 a++; b: Console.WriteLine(a); Console.ReadKey(); 输出结果为:5,执行g ...

  2. jsp与httpservlet的微小区别

    2015-8 jsp与httpservlet的微小区别: jsp默认支持会话,httpservlet默认不支持会话:jsp: 可以直接通过session引用httpservlet对象httpservl ...

  3. c# 编程--数组例题

    1.输入十个学生的成绩,找出最高分 #region 输入十个学生的成绩,找出最高分 //输入十个学生的成绩,找出最高分 ]; ; i < ; i++) { ; Console.Write(&qu ...

  4. 关于GeneXus封装方法Model的方法

     最近 刚从外地出差回来 工作任务不是很重 能够抽点时间记点东西 下午花了2个多钟头尝试了一下GeneXus的封装方法的功能,这里记一下便于自己以后查看.我们在许多项目中或多或少都会有着重复代码编写的 ...

  5. 使用canvas时, 如何用相对单位(rem, rpx)来适配不同机型

    使用canvas的api时, 使用的都是绝对数值, 如: 方法传参是坐标位置,不带单位,如ctx.translate(10,10); 那么此时, 我就需要将rem或rpx 转换成 px; 首先, 获取 ...

  6. 容器和Docker

    一.容器 1.虚拟机和容器的区别 (1)为什么要用docker 服务器端开发/部署: 实现更轻量级的虚拟化,方便快速部署, 对于部署来说可以极大的减少部署的时间成本和人力成本 Docker支持将应用打 ...

  7. Qt 浅析Q_PROPERTY宏

    最近在使用QProperAnimation画类,研究这个的时候看到别人写的代码有用到 Q_PROPERTY()这个宏,然后查了下,这个宏只有Qt才有的 并且需要进行编译,继承于QOBJECT Qt 手 ...

  8. mysql内连接(inner join 找两个表的交集)、左连接(left join 交集并且左表所有)、右连接(right join 交集并且右表所有)、全连接(mysql不支持)

    用两个表(a_table.b_table),关联字段a_table.a_id和b_table.b_id来演示一下MySQL的内连接.外连接( 左(外)连接.右(外)连接.全(外)连接). MySQL版 ...

  9. 【leetcode】922. Sort Array By Parity II

    题目如下: 解题思路:非常简单的题目,引入两个变量oddInx = 1和evenInx = 0,和与A等长的结果数组res.然后遍历A,如果A[i]为偶数,则令res[evenInx] = A[i], ...

  10. PHP基础知识------页面静态化

    1.在开发项目时,有时会遇到一些页面数据量特别大,但是又不经常改变的情况,如商城首页等,这时候就需要进行页面静态化,减轻服务器和数据库的压力. 这里我们先用原生的PHP写一个简单的demo,用来理解页 ...