Time Limit: 30 Sec  Memory Limit: 128 MB

有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆。这座博物馆有着特别的样式。它包含由m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间。
两个人在博物馆里逛了一会儿后两人决定分头行动,去看各自感兴趣的艺术品。他们约定在下午六点到一间房间会合。然而他们忘记了一件重要的事:他们并没有选好在哪儿碰面。等时间到六点,他们开始在博物馆里到处乱跑来找到对方(他们没法给对方打电话因为电话漫游费是很贵的)
不过,尽管他们到处乱跑,但他们还没有看完足够的艺术品,因此他们每个人采取如下的行动方法:每一分钟做决定往哪里走,有Pi 的概率在这分钟内不去其他地方(即呆在房间不动),有1-Pi 的概率他会在相邻的房间中等可能的选择一间并沿着走廊过去。这里的i指的是当期所在房间的序号。在古代建造是一件花费非常大的事,因此每条走廊会连接两个不同的房间,并且任意两个房间至多被一条走廊连接。
两个男孩同时行动。由于走廊很暗,两人不可能在走廊碰面,不过他们可以从走廊的两个方向通行。(此外,两个男孩可以同时地穿过同一条走廊却不会相遇)两个男孩按照上述方法行动直到他们碰面为止。更进一步地说,当两个人在某个时刻选择前往同一间房间,那么他们就会在那个房间相遇。
两个男孩现在分别处在a,b两个房间,求两人在每间房间相遇的概率。
 
第一行包含四个整数,n表示房间的个数;m表示走廊的数目;a,b (1 ≤ a, b ≤ n),表示两个男孩的初始位置。
之后m行每行包含两个整数,表示走廊所连接的两个房间。
之后n行每行一个至多精确到小数点后四位的实数 表示待在每间房间的概率。
题目保证每个房间都可以由其他任何房间通过走廊走到。
 
输出一行包含n个由空格分隔的数字,注意最后一个数字后也有空格,第i个数字代表两个人在第i间房间碰面的概率(输出保留6位小数)
注意最后一个数字后面也有一个空格

Sample Input

2 1 1 2
1 2
0.5
0.5

Sample Output

0.500000 0.500000

对于100%的数据有 n <= 20,n-1 <= m <= n(n-1)/2


(可以列个概率方程并暴力矩乘,然鹅并不知道什么时候收敛,精度会出现误差)

设两个人在$(x,y)$的期望经过次数为$f(x,y)$,$(x,y)$转移到$(r,w)$的概率为$a[(r,w)][(x,y)]$,

点$i$连$in[i]$条边,在点$i$停留的概率为$p[i]$

$a[(x,y)][(x,y)]=p[x]*p[y]$

$a[(x,y+1)][(x,y)]=p[x]*(1-p[y])/in[y]$

$a[(x+1,y)][(x,y)]=p[y]*(1-p[x])/in[x]$

$a[(x+1,y+1)][(x,y)]=(1-p[y])/in[y]*(1-p[x])/in[x]$

那么对于每个$f(x,y)$,我们都能得出一个方程:

$f(x,y)= \sum f(r,w)*a[(x,y)][(r,w)]$($r=x$或存在边$(x,r)$,$w$同理)

酱紫我们就得出了$n^2$个方程。

发现方程组存在环的关系,而对于$n$元1次方程组,常规做法是套个高斯消元上去

把上面的方程移项一下

$ \sum f(r,w)*a[(x,y)][(r,w)]-f(x,y)=0$

蓝后跑高斯消元就好辣

最后对于$f(a,b)$,因为是初始点,所以要期望次数+1

终点只走一次,所以期望经过次数就等于概率

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
typedef double db;
const db eps=1e-;
inline db Fabs(db x){return x<?-x:x;}
#define N 420
int n,m,w,A,B,id[N][N];
db p[N],a[N][N],sol[N];
vector <int> g[N];
void draw(int x,int y){
int e=id[x][y],lx=g[x].size(),ly=g[y].size();//lx,ly:x,y的连边数
for(int i=;i<lx;++i){
int r=g[x][i];
a[id[r][y]][e]+=(-p[x])/(1.0*lx)*p[y];
}
for(int i=;i<ly;++i){
int r=g[y][i];
a[id[x][r]][e]+=(-p[y])/(1.0*ly)*p[x];
}
for(int i=;i<lx;++i)
for(int j=;j<ly;++j){
int r1=g[x][i],r2=g[y][j];
a[id[r1][r2]][e]+=(-p[x])/(1.0*lx)*(-p[y])/(1.0*ly);
}
}
void gauss(){
for(int i=,x=;i<=w;x=++i){
for(int j=i+;j<=w;++j) if(Fabs(a[j][i])>Fabs(a[x][i])) x=j;
if(x!=i) swap(a[x],a[i]);
if(Fabs(a[i][i])<eps) continue;
for(int j=;j<=w;++j){
if(i==j) continue;
db div=a[j][i]/a[i][i];
for(int u=i;u<=w+;++u) a[j][u]-=a[i][u]*div;
}
}
for(int i=w;i;--i){
sol[i]=a[i][w+];
for(int j=w;j>i;--j) sol[i]-=sol[j]*a[i][j];
sol[i]/=a[i][i];
}
for(int i=;i<=n;++i) printf("%.6f ",sol[id[i][i]]+eps);//防止输出-0.00
}
int main(){
scanf("%d%d%d%d",&n,&m,&A,&B);
for(int i=,u,v;i<=m;++i){
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
for(int i=;i<=n;++i) scanf("%lf",&p[i]);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
id[i][j]=++w;
if(i!=j) a[w][w]=p[i]*p[j];
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(i!=j) draw(i,j);
for(int i=;i<=w;++i) a[i][i]-=1.0;//移项系数为-1
a[id[A][B]][w+]=-1.0;//起点+1
gauss(); return ;
}

bzoj3270 博物馆(期望+高斯消元)的更多相关文章

  1. [bzoj3270] 博物馆 [期望+高斯消元]

    题面 传送门 思路 本题的点数很少,只有20个 考虑用二元组$S=(u,v)$表示甲在$u$点,乙在$v$点的状态 那么可以用$f(S)$表示状态$S$出现的概率 不同的$f$之间的转移就是通过边 转 ...

  2. BZOJ3270 博物馆(高斯消元+概率期望)

    将两个人各自所在点视为状态,新建一个图.到达某个终点的概率等于其期望次数.那么高斯消元即可. #include<iostream> #include<cstdio> #incl ...

  3. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  4. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  5. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  6. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  7. BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...

  8. 【BZOJ3270】【高斯消元】博物馆

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

  9. BZOJ 3270: 博物馆 概率与期望+高斯消元

    和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解. #include <bits/stdc++.h> #define N 23 #define setIO(s) freope ...

随机推荐

  1. Taro -- 使用 Redux 来进行全局变量的管理

    前言 Redux是JavaScript 状态容器,提供可预测化的状态管理.一般来说,规模比较大的小程序,页面状态,数据缓存,需要管理的东西太多,这时候引入Redux可以方便的管理这些状态,同一数据,一 ...

  2. vue.js 笔记

    <!-- 多层for循环 --> <ul> <li v-for="(ite,key) in list2"> {{key}}-------{{it ...

  3. python基础模块,包

    #import cal,time #导入模块名可以看作导入一个变量 #from cal import add # from cal import *#引入所有变量 *代表所有 占内存 不推荐 # # ...

  4. Java中数组在内存中的存放原理?

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/yangyong0717/article/details/79165685Java中数组被实现为对象, ...

  5. P1864 [NOI2009]二叉查找树

    链接P1864 [NOI2009]二叉查找树 这题还是蛮难的--是我菜. 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质: 首先不管怎么转,中序遍历是确定的,所 ...

  6. D0g3_Trash_Pwn_Writeup

    Trash Pwn 下载文件 1 首先使用checksec查看有什么保护 可以发现,有canary保护(Stack),堆栈不可执行(NX),地址随机化没有开启(PIE) 2 使用IDA打开看看 mai ...

  7. shell学习----正则表达式

    在使用sed和gawk时如果能够熟练的使用正则表达式,可以准确的过滤到自己需要的信息 Linux中,有两种流行的正则表达式引擎: POSIX基础正则表达式,BRE引擎 POSIX扩展正则表达式,ERE ...

  8. 前端工具-gulp-ruby-sass-解决带有中文路径报错(incompatible character encodings GBK and UTF-8)

    注意:错误提示真的是非常重要的!!! 今天 gulp 一个外国人的项目时编译 sass 时提示 Encoding::CompatibilityError: incompatible character ...

  9. 【The type javax.servlet.http.HttpServletRequest cannot be resolved】解决方案

    是缺少serverlet的引用库,解决如下 1.工程右键-properties->java build path 2.在java build path的libraries tab页中选择Add ...

  10. HTML 解析类库HtmlAgilityPack

    1. HtmlAgilityPack简介 网站中首先遇到的问题是爬虫和解析HTML的问题,一般情况在获取页面少量信息的情况下,我们可以使用正则来精确匹配目标.不过本身正则表达式就比较复杂,同时正则表达 ...