给定长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:

1、“1 x y”,查询区间 [x,y] 中的最大连续子段和,即 maxx≤l≤r≤ymaxx≤l≤r≤y{∑ri=lA[i]∑i=lrA[i]}。

2、“2 x y”,把 A[x] 改成 y。

对于每个查询指令,输出一个整数表示答案。

输入格式

第一行两个整数N,M。

第二行N个整数A[i]。

接下来M行每行3个整数k,x,y,k=1表示查询(此时如果x>y,请交换x,y),k=2表示修改。

输出格式

对于每个查询指令输出一个整数表示答案。

每个答案占一行。

数据范围

N≤500000,M≤100000N≤500000,M≤100000

输入样例:

5 3
1 2 -3 4 5
1 2 3
2 2 -1
1 3 2

输出样例:

2
-1

算法:线段树最大子段和

代码:

#include <iostream>
#include <cstdio> using namespace std; #define INF 0x3f3f3f3f const int maxn = 5e5+; struct node {
int ms; //存储当前区间最大子段和
int lmax; //左边得前缀和
int rmax //右边得前缀和
int sum; //这个区间的总和
}tree[maxn << ]; int arr[maxn];
int n, m; void pushup(int root) { //参数的解释:
tree[root].sum = tree[root << ].sum + tree[root << | ].sum; //左子数的总和 + 右子树的总和
tree[root].lmax = max(tree[root << ].lmax, tree[root << ].sum + tree[root << | ].lmax); //左子数左边得前缀和,左子数得总和 + 右子树左边的前缀和
tree[root].rmax = max(tree[root << | ].rmax, tree[root << | ].sum + tree[root << ].rmax); //右子树右边的前缀和,右子树的总和 + 左子数右边的前缀和
tree[root].ms = max(max(tree[root << ].ms, tree[root << | ].ms), tree[root << ].rmax + tree[root << | ].lmax); //左子树的区间最大子段和,右子树的区间最大子段和,左子数右边的前缀和 + 右子树左边的前缀和
} void build(int root, int l ,int r) {
if(l == r) {
tree[root].sum = arr[l];
tree[root].ms = arr[l];
tree[root].lmax = arr[l];
tree[root].rmax = arr[l];
return;
}
int mid = (l + r) >> ;
build(root << , l ,mid);
build(root << | , mid + , r);
pushup(root);
} void update(int root, int l, int r, int x, int y) {
if(l == r) {
tree[root].sum = y;
tree[root].ms = y;
tree[root].lmax = y;
tree[root].rmax = y;
return;
}
int mid = (l + r) >> ;
if(x <= mid) {
update(root << , l, mid, x, y);
} else {
update(root << | , mid + , r, x, y);
}
pushup(root);
} struct node query(int root, int l, int r, int x, int y) {
if(x <= l && r <= y) {
return tree[root];
}
int mid = (l + r) >> ;
struct node a, b, c;
//首先初始化,因为有可能进入第一种或者是第二种情况,那么其中有一个变量就用不到
a.ms = a.lmax = a.rmax = a.sum = -INF;
b.ms = b.lmax = b.rmax = b.sum = -INF;
c.ms = c.lmax = c.rmax = -INF;
c.sum = ;
//分三种情况:
if(x <= mid && y <= mid) {
a = query(root << , l, mid, x, y);
c.sum += a.sum;
} else if(x > mid && y > mid) {
b = query(root << | , mid + , r, x, y);
c.sum += b.sum;
} else {
a = query(root << , l, mid, x, y);
b = query(root << | , mid + , r, x, y);
c.sum += a.sum + b.sum;
}
//解释同上...
c.ms = max(c.ms, max(a.rmax + b.lmax, max(a.ms, b.ms)));
c.lmax = max(c.lmax, max(a.lmax, a.sum + b.lmax));
c.rmax = max(c.rmax, max(b.rmax, b.sum + a.rmax));
return c;
} int main() {
scanf("%d %d", &n, &m);
for(int i = ; i <= n; i++) {
scanf("%d", &arr[i]);
}
build(, , n);
while(m--) {
int q, x, y;
scanf("%d %d %d", &q, &x, &y);
if(q == ) {
if(x > y) { //题目中有解释...
swap(x, y);
}
printf("%d\n", query(, , n, x, y).ms);
} else {
update(, ,n, x, y);
}
}
return ;
}

AcWing:245. 你能回答这些问题吗(线段树最大子段和)的更多相关文章

  1. Acwing 245.你能回答这些问题吗

    题目描述 给定长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1."1 x y",查询区间 [x,y] 中的最大连续子段和,即 maxx≤l≤r≤y{∑ri=lA[i ...

  2. ACwing 你能回答这些问题吗(线段树求最大连续字段和)

    给定长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“1 x y”,查询区间 [x,y] 中的最大连续子段和,即 maxx≤l≤r≤ymaxx≤l≤r≤y{∑ri=lA[i]∑i=l ...

  3. acwing 243. 一个简单的整数问题2 树状数组 线段树

    地址 https://www.acwing.com/problem/content/description/244/ 给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l ...

  4. AcWing 243. 一个简单的整数问题2 (树状数组)打卡

    题目:https://www.acwing.com/problem/content/244/ 题意:区间加,区间查询 思路:我们把原先那个差分数组分解一下 ∑i=1x∑j=1ib[j]=∑i=1x(x ...

  5. AcWing:242. 一个简单的整数问题(树状数组)

    给定长度为N的数列A,然后输入M行操作指令. 第一类指令形如“C l r d”,表示把数列中第l~r个数都加d. 第二类指令形如“Q X”,表示询问数列中第x个数的值. 对于每个询问,输出一个整数表示 ...

  6. AcWing:148. 合并果子(哈夫曼树)

    在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆. 达达决定把所有的果子合成一堆. 每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和. 可以看出 ...

  7. AcWing 107. 超快速排序(归并排序 + 逆序对 or 树状数组)

    在这个问题中,您必须分析特定的排序算法----超快速排序. 该算法通过交换两个相邻的序列元素来处理n个不同整数的序列,直到序列按升序排序. 对于输入序列9 1 0 5 4,超快速排序生成输出0 1 4 ...

  8. AcWing:246. 区间最大公约数(线段树 + 增量数组(树状数组) + 差分序列)

    给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d. 2.“Q l r”,表示询问 A[l],A[l ...

  9. AcWing 247. 亚特兰蒂斯 (线段树,扫描线,离散化)

    题意:给你\(n\)个矩形,求矩形并的面积. 题解:我们建立坐标轴,然后可以对矩形的横坐标进行排序,之后可以遍历这些横坐标,这个过程可以想像成是一条线从左往右扫过x坐标轴,假如这条线是第一次扫过矩形的 ...

随机推荐

  1. python打印带颜色的字体

    在python开发的过程中,经常会遇到需要打印各种信息.海量的信息堆砌在控制台中,就会导致信息都混在一起,降低了重要信息的可读性.这时候,如果能给重要的信息加上字体颜色,那么就会更加方便用户阅读了. ...

  2. python_0基础开始_day12

    第十二节 一,生成器 生成器的核心:生成器的本质就是迭代器 迭代器是python自带的 生成器是程序员自己写的一种迭代器 在python中有三种方式来创建生成器: 基于函数编写 推导式方式编写 pyt ...

  3. Spring 自定义注解,结合AOP,配置简单日志注解 (转)

    java在jdk1.5中引入了注解,spring框架也正好把java注解发挥得淋漓尽致. 下面会讲解Spring中自定义注解的简单流程,其中会涉及到spring框架中的AOP(面向切面编程)相关概念. ...

  4. Storm的基本概念

    Storm的基本概念 Topology:拓扑,也俗称一个任务,类似于MapReduce中的job.将Spout.Bolt整合起来的拓扑图.定义了Spout和Bolt的结合关系.并发数量.配置等等. S ...

  5. python+minicap的使用

    说起Minicap,不得不提到STF,STF (Smartphone Test Farm) 是一个开源的web架构应用,用户可通过浏览器远程操作Android设备.调试Android应用.在设备上进行 ...

  6. Intel Coleto Creek SSL chipset

    Intel Coleto Creek SSL chipset name type interface speed model SR-IOV driver Intel SSL chipset Colet ...

  7. 89. Gray Code (Java)

    The gray code is a binary numeral system where two successive values differ in only one bit. Given a ...

  8. Google浏览器显示URL的 http https ....

    谷歌浏览器输入 chrome://flags/#omnibox-ui-hide-steady-state-url-trivial-subdomains 输入之后, 高亮部分选项 改为 Disabled ...

  9. hadoop安装zookeeper-3.4.12

    在安装hbase的时候,需要安装zookeeper,当然也可以用hbase自己管理的zookeeper,在这里我们独立安装zookeeper-3.4.12. 下载地址:https://mirrors. ...

  10. 2019-2020-1 20199319《Linux内核原理与分析》第八周作业

    可执行程序工作原理 ELF目标文件格式 1.目标文件(ABI,应用程序二进制接口):编译器生成的文件. 2.目标文件的格式:out格式.COFF格式.PE(windows)格式.ELF(Linux)格 ...