POJ 1984 Navigation Nightmare 带全并查集
Description
F1 --- (13) ---- F6 --- (9) ----- F3
| |
(3) |
| (7)
F4 --- (20) -------- F2 |
| |
(2) F5
|
F7
Being an ASCII diagram, it is not precisely to scale, of course.
Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path
(sequence of roads) links every pair of farms.
FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:
There is a road of length 10 running north from Farm #23 to Farm #17
There is a road of length 7 running east from Farm #1 to Farm #17
...
As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:
What is the Manhattan distance between farms #1 and #23?
FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms.
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).
When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".
Input
* Line 1: Two space-separated integers: N and M * Lines 2..M+1: Each line contains four space-separated entities, F1,
F2, L, and D that describe a road. F1 and F2 are numbers of
two farms connected by a road, L is its length, and D is a
character that is either 'N', 'E', 'S', or 'W' giving the
direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's
queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob
and contains three space-separated integers: F1, F2, and I. F1
and F2 are numbers of the two farms in the query and I is the
index (1 <= I <= M) in the data after which Bob asks the
query. Data index 1 is on line 2 of the input data, and so on.
Output
* Lines 1..K: One integer per line, the response to each of Bob's
queries. Each line should contain either a distance
measurement or -1, if it is impossible to determine the
appropriate distance.
Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6
Sample Output
13
-1
10
Hint
At time 3, the distance between 1 and 4 is still unknown.
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10.
题意:
给你一个n点的方位图m条边
q个询问
每次询问你 a,b,time a和b在连接第time条边的时候 的曼哈顿距离
题解:
带全并查集
保留每个点与根节点 的横纵坐标距离
find的时候 记得 更新
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 4e4+, M = 4e4+, mod = 1e9+, inf = 1e9+;
typedef long long ll; int n,m,fa[N],a[N],b[N],c[N],xc[N],yc[N];
char ch[N][];
int q;
int finds(int x) {
if(fa[x] == x) return x;
int xx = finds(fa[x]);
int t = fa[x];
xc[x] += xc[t];
yc[x] += yc[t];
fa[x] = xx;
return xx;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++) scanf("%d%d%d%s",&a[i],&b[i],&c[i],ch[i]);
for(int i=;i<=n;i++) fa[i] = i;
scanf("%d",&q);
int l = ,r,f1,f2;
while(q--) {
scanf("%d%d%d",&f1,&f2,&r);
while(l<=r) {
int fx = finds(a[l]);
int fy = finds(b[l]);
if(fx!=fy) {
fa[fx] = fy;
xc[fx] = -xc[a[l]] , yc[fx] = -yc[a[l]];
if(ch[l][] == 'E') xc[fx] += (xc[b[l]] - c[l]),yc[fx] += yc[b[l]];
else if(ch[l][] == 'W') xc[fx] += (xc[b[l]] + c[l]),yc[fx] += yc[b[l]];
else if(ch[l][] == 'N') yc[fx] += (yc[b[l]] - c[l]), xc[fx] += xc[b[l]];
else yc[fx] += (yc[b[l]] + c[l]), xc[fx] += xc[b[l]];
}//cout<<1<<endl;
l++;
}
int fx = finds(f1);
int fy = finds(f2);
if(fx != fy) puts("-1");
else {
// if(r == 6) cout<<xc[f1]<<" "<<yc[f1]<<endl,cout<<xc[f2]<<" "<<yc[f2]<<endl;
printf("%d\n",abs(xc[f1]-xc[f2]) + abs(yc[f1]-yc[f2]));
}
}
}
POJ 1984 Navigation Nightmare 带全并查集的更多相关文章
- POJ 1984 - Navigation Nightmare - [带权并查集]
题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS ...
- BZOJ 3362 Navigation Nightmare 带权并查集
题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...
- POJ 1984 Navigation Nightmare 【经典带权并查集】
任意门:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 1984 Navigation Nightmare(二维带权并查集)
题目链接:http://poj.org/problem?id=1984 题目大意:有n个点,在平面上位于坐标点上,给出m关系F1 F2 L D ,表示点F1往D方向走L距离到点F2,然后给出一系 ...
- POJ-1984-Navigation Nightmare+带权并查集(中级
传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...
- POJ 1773 Parity game 带权并查集
分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...
- POJ 1182 食物链 【带权并查集】
<题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...
- POJ 1182 食物链 (带权并查集)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 78551 Accepted: 23406 Description ...
- POJ 1182 食物链 【带权并查集/补集法】
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...
随机推荐
- ThinkPHP增加数据库字段后插入数据为空的解决办法
今天用ThinkPHP做了一个简单的商品发布系统,数据库本来只有四个字段id,name,url,image.id是主键,name是商品名称,url是商品链接,image是商品图片,做的差不多了,发现还 ...
- 18. javacript高级程序设计-JavaScript与XML
1. JavaScript与XML IE采取了下列方式: l 通过ActiveX对象来支持处理XML,而相同的对象也可以用来构建桌面应用程序 l Windows携带了MSXML库,JavaScript ...
- [第三方]SCNetworkReachability 获取网络状态控件使用方法
用Cocoa Pods导入控件以后 直接导头文件 复制以下代码 [SCNetworkReachability host:@"github.com" reachabilityStat ...
- ORACLE 远程导入导出数据库
Oracle数据导入导出imp/exp就相当于oracle数据还原与备份.exp命令可以把数据从远程数据库服务器导出到本地的dmp文件,imp命令可以把dmp文件从本地导入到远处的数据库服务器中. ...
- HDU 5752 Sqrt Bo (思维题) 2016杭电多校联合第三场
题目:传送门. 题意:一个很大的数n,最多开5次根号,问开几次根号可以得到1,如果5次还不能得到1就输出TAT. 题解:打表题,x1=1,x2=(x1+1)*(x1+1)-1,以此类推.x5是不超过l ...
- iOS block 的底层实现
其实swift 的闭包跟 OC的block 是一样一样的,学会了block,你swift里边的闭包就会无师自通. 参考:http://www.jianshu.com/p/e23078c11518 ht ...
- Android笔记:菜单
1.按键调出菜单 public boolean onCreateOptionsMenu(Menu menu) 重写建立菜单方法 public boolean onOptionsItemSelected ...
- Java RSA 密钥生成工具
MAC openssl: RSA加解密 第一条命令是生成密钥长度为1024的密钥: 第二条命令是从中生成公钥: 第三条命令是使用pkcs8编码密钥为私钥 http://blog.csdn.net/ch ...
- Union函数
. 共用体声明和共用体变量定义 共用体(参考“共用体”百科词条)是一种特殊形式的变量,使用关键字union来定义 共用体(有些人也叫"联合")声明和共用体变量定义与结构体十分相似. ...
- XMPP框架下微信项目总结(7)聊天通信处理-发送,接受数据
前言:通其他的功能处理一样,聊天也是通过模块发起的成为:“消息模块” 原理:1 current客户端开启通过消息模块开启并监听消息(监听通过代理). 2 当“current客户端”收到来自“other ...