Description

个物品,每个物品长度为,现在要把这个物品划分成若干组,每组中的物品编号是连续的,规定每组的长度,费用为,求最小费用.

Input

第一行输入两个整数,接下来行输入.

Output

一行表示最小费用.

Sample Input

5 4

3

4

2

1

4

Sample Output

1

HINT

Solution

表示将前个物品分组所需最小费用.

,考虑斜率优化.

时,

尽量将分离,设,得

的前提是

整理得

(若存在,因为单调递增,所以一定比优,即可以删去)

所以每次取元素时,将满足出队(因为优),然后取队首为.

#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 50001
using namespace std;
typedef long long ll;
ll f[N],s[N],q[N],h,t,l,n;
inline ll sqr(ll k){
return k*k;
}
inline ll x(ll k){
return k+s[k];
}
inline ll y(ll k){
return f[k]+sqr(x(k));
}
inline double cmp(ll p,ll q){
return (double)(y(q)-y(p))/(double)(x(q)-x(p));
}
inline ll g(ll k){
return k+s[k]-l;
}
inline void init(){
scanf("%lld%lld",&n,&l);
for(ll i=1;i<=n;i++){
scanf("%lld",&s[i]);
s[i]+=s[i-1];
}
for(ll i=1,k;i<=n;i++){
k=g(i)<<1;
while(h<t&&cmp(q[h],q[h+1])<k) h++;
f[i]=f[q[h]]+sqr(x(q[h])-g(i)+1);
while(h<t&&cmp(q[t],i)<cmp(q[t-1],q[t]))
t--;
q[++t]=i;
}
printf("%lld\n",f[n]);
}
int main(){
freopen("toy.in","r",stdin);
freopen("toy.out","w",stdout);
init();
fclose(stdin);
fclose(stdout);
return 0;
}

[bzoj1010][HNOI2008]玩具装箱的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...

  3. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  4. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  6. [BZOJ1010][HNOI2008]玩具装箱toy 解题报告

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ1010 [HNOI2008]玩具装箱toy

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  8. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  9. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  10. 题解【bzoj1010 [HNOI2008]玩具装箱TOY】

    斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...

随机推荐

  1. C语言操作文件

    #include <stdio.h> struct stu{ ]; int num; int age; ]; }boya[],boyb[]; struct stu *pa,*pb; mai ...

  2. QuartzCore笔记

    Quartz Core 图层编程 一.添加 Quartz Core 框架 要使用 Quartz Core 框架,你需要将其添加到你的工程中 . 然后 #import <Quartz Core/Q ...

  3. 如何在Eclipse和Tomcat的Debug过程中启用热部署

    参考的地址是 http://blog.redfin.com/devblog/2009/09/how_to_set_up_hot_code_replacement_with_tomcat_and_ecl ...

  4. MIPAV - Talairach ACPC transform

    源地址:http://blog.sina.com.cn/s/blog_64cfe24f0100h358.html 1.打开MIPAV软件,File>open image from disk> ...

  5. node基础06:回调函数

    1.Node异步编程 Node.js 异步编程的直接体现就是回调. 异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了. 回调函数在完成任务后就会被调用,Node 使用了大量的回调函数,No ...

  6. C# where用法

    where 子句用于指定类型约束,这些约束可以作为泛型声明中定义的类型参数的变量. 1.接口约束. 例如,可以声明一个泛型类 MyGenericClass,这样,类型参数 T 就可以实现 ICompa ...

  7. 使Eclipse符合Java编程规范

    编程规范是很重要的东西,能让团队的代码易于阅读和维护,也便于日后的功能扩展. 工欲善其事必先利其器!作为一个Java程序员,与Eclipse打交道可能是一辈子的事情.将Eclipse设置为符合公司编程 ...

  8. swift——uiwebview的使用

    首先,创建一个label: agreeDeal = UILabel() let tap = UITapGestureRecognizer.init(target: self, action: #sel ...

  9. 动手开发自己的第一个 composer 包

    原文:http://blog.jayxhj.com/2016/05/basic-composer-package-development/ composer 是 PHP 的依赖管理工具,本篇文章就来说 ...

  10. 误人子弟的网络,谈谈HTTP协议中的短轮询、长轮询、长连接和短连接

    引言 最近刚到公司不到一个月,正处于熟悉项目和源码的阶段,因此最近经常会看一些源码.在研究一个项目的时候,源码里面用到了HTTP的长轮询.由于之前没太接触过,因此LZ便趁着这个机会,好好了解了一下HT ...