aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsAAAAInCAIAAAAZDHiCAAAgAElEQVR4nO3dPVLjzNoG4G8T5CyEFC9kKCdkbGAiJSYin4Qqr4CAGlLnbzBVk0wROZvwLMFfoL/uVktWgw3Yc11FnTPIsv7M6771dEv6vx0AQKH/++wNAABOjwABABQTIACAYgIEAFBMgIB/zPPN3eXF3eXNr2Da34eru8uLu+v7v6Nv+/NyfTGYJzsx867Vw59warO6eBuA0yJAwHl4ery8uLu8eHzeM9+v20yTf/AA8ffh6u76/m8UIJ4eL69eXoNtuH0q3EfgCxEg4DzMDBDNbPmSQDYHXF6U/dw+BWt56gJEEFzy2wCcFgECzkMuQLzer7JdFW0lIJ1+sABRr/rq8bkLEPcv11dNn8Xr/WrsXcDpECDgPAxO6/t2uosLUY9D2I8QBYjmjUnIKOnCaIZZZH5WD3/yoUSAgFMjQMCpyZzB3/xqA8TwLL+PFF27/pkBoqlJNJWSZl1GU8LpESDg1OwJEBer6/4UP+jRaBv7NwaIckGMGNZFmin1PFODN4EvSoCAExY0/H2ACFLFYM73ViC6icOBkE+P/RqDsBL3XzQrTdar/wJOkAABpytsxdt/X88YDlkeIPq3N419HCD6osjNr27JlxePz/kkkWyDyzHgFAkQcKradro+7++uwmhLEZlxCTcvQVAoCBBtZ0RcbxgUFbq3vN6vgqJI243y9Hh59fJwc3d789jMPPfeFcAXJEDASepKAm2jHjTG8WDJ1tOv5ygozA0Q/VCGsCYx6DEJ1jV+8Wd0I6l2rIYRlHCSBAg4PX0L3Tfb0dl80ITneiLmB4joeoqxADFyV4nxABEt1gAIOE0CBJyWcFRBpkXvugOCnoW+kS4NENFCmtVFtYfR4Qvx5RWDG1V1C3n3tR7AJxEg4NQ0p+9J05sZT9A2//2c5V0YT4+3T92Ux9u0tBAGiPb5F7s4ZNz8ausN/bYFV6IaAAEnSoCAk/Pn5XowbqBtkpP2+O/DVdrGJwFi9CcIKElNInraRb/w9DFd8f0qMvez6hLGQY8O8DEECDhhg9EGe3oE3h8gWm1PSj+CIYkUw/tSDJb/HF38CZwWAQJOWXyWv7c7YMZju3NxIXdniJH8MRg5EXRq9JeYDkdTGkoJp0aAAPbJ35syU2OI7iuVzQSDB4Tunm+kBzhFAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgOBr21SL5Xrb/bpdL9vfN9UiZ7ne1rN1qk30azc1XGa12W3Xy3BN4Rb08/4D3rK/Y8cuXfDETD4yODUCBJ8tDgJpg5BpdSYaorZFaRqYdkL3a7CI7vf2xbQ1aud5R2v0fDN86kT3+KvhYzOLph/NsQLE4EMYefkzP7L2CWHBfbgHj/xo7uc9Mj1YQvyQsLHlxLsYbvemav57SKPy/qwGH0KA4LMFeWBfWtjbMKQBonnD1Ols7rX2a/vtrVH3jKg4QLTPwn7vv49p1v6OlH/SRi57cPNzf/pH9nq/ip9OXhs77CPTnx6DT/zXbf8HMOPjCwPEpup3OA4Wm0qE4IsQIPhsaYBYj3dNdA3DsAnppgcBojtBnTid7ddeejq7XS/3fJP/fbiKA8TTY/qIy/oMtXR6cvgW1bo7HnVhP2lxo/Z+X9M6N0CEuz7saCooG3Xv+cyP7M/LdVFQmJfnnm+6IkRJgNiul2lkiLtv9NDwJQgQfLa3VCCSlmMwfbte1q1qnzfG6uHbbbOc4weIoDnZ7XbtE67Lp0e6Qne7SdEv7R4EZ+/VnrPXNwSI9PgOAkQ9w9SolU/+yF7vV5k+hd3uXQHi6TEoacwPEIMSQxQgglFA8MkECD7bYAxE1HaMBogZFYj99fDxEvtyvX73GIgPCxBRpWHQ1BQ2OeUBIsotzYR05GtmkfHbPvcje765u7xaBcMXuuMcj10YG9MQV4ZyTz+fmr8/qIvlclhfSIOX8gNfhADBZ8tUIIIW5x0ViL4paX6N2pVBI3P4QZRfJED0be6sGFEaIJrVhGf30aHMnvaHXfz9bJ/3kT3fRO198mvr122+7R+Z/uflOh0EMzl/XUxaLtNDowuDL0qA4LPluzCCtuCdASIeoNe3qM13cP6MNmi7Tj9AxPu5L0WUBIh6ofFQi/jyyk21WC6X40Nbum363I8sPdR/Xq4zAypHezoOM7399NLIlVydMfgdPokAwWd74xiIXHk7ChDBC31Fo6kG5/rv0/F7hw8QxxtEOSNAjE8bLnD+VRiDZbVDGeoX6mXt+1i7N37eR5a26NHwhfHZ9k0fqWTsCRC7JJglgUEJgq9CgOCzDcZApK/ur0B0BhWIbnLXv14lp2+jrVGwBYe6CuMYl3HOGQNRhUdwX9vzlqswEsMC0bwA8ZkfWXjJ5d+Hq6Yg8Xq/6j/BoEtibPrzTfAZBVd2jM2fHpSkmtPFsOSaDPmBL0GA4LO9pQKxb1mZ1ihIJ9FXcNwaNYX2TEs2MBkguvtAxHclCl9KOyNKp/e7vK8CEUa0WTeM/CIB4mM/smicY1fpeXrMf46Hmp4clOEhWK63ySBK12DwVQgQfEnBd2bcGZxtGAZzD89Ic7X8wSi+aKbM7RT+Ce8IEP3nkI5tDEdc5ptBHxmcGgECCL19zAfwTxEggJAAAcwiQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAv4BzY0dZ9zjwaMWgHkECDg74cMTkoeiD5+mlTxpIas8UPx9uJp8hAdw8gQIOF9NxSGfEfpI0eSD5PkTb78l5YyHiAInT4CAs7OpumeKtQ9zbKJA5jno7QOzJ+Se/zjxZMunx8url9f2t9f7Vf9wS+B8CBBwfpqc0GSDfD4InqH+lgrEeIB4vrmLEsPTo44MOEcCBJyjPjtUmyAKjFQgugDx7rEPOwEC/hUCBJylsEIwM0AciAAB/wYBAs5TcL1FdhBlEyS26+Wi2oxfilEeLgQI+DcIEHCW6khQp4SpCkR0hWf02qYaGyW5h0GU8E8QIOAM1WGgri5MBog4NWzXy8VyvZ26xCKcdWwWl3HCv0CAgLPTBofoQs5s70RSddiul3P7LvZljOcbN5KC8yZAwLkZDIscHSdZv9Dni+QqzvddjQGcNwECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAsYkA8fR4eXF3efOr/f3X7cXd5cXjc/rvxuv9Kph5uJBft/H8AMDJOlSAqGe+uLt9yi/k+ebu8uLu8mL18OfAewAAfLg5AeLPy/VF3fznf+rQ8Hq/uhyUJcIU8nq/EiAA4CzkA0RdYGh/rl5e+4mjXRi73d+Hq7vbp7+v948TaaNdGgBwug43BiKnDSLDsREAwAkrCBATgopFMH/bqVGPgdB5AQBnY1aA+PtwNaNLIlexuL5aBTO7CgMAzkNBgKhLCEHnRT24ciRAPN/cXV48PidXYRgAAQDnYG+AuLi7vHq8LQ0Q3b8HZYzr+7/H3ysA4KiyASK8bvMNFYjm7Y/PuzhVtItN7xUBAJyYw4+BeKwHVDaVhrhf4/V+pQIBAKfvKGMgft2OjqwEAM7A0QZRDhYCAJyNgwWIoJtDXACAMzceIOrbQF3f/50zBuL5pksYkzMbRAkA5yAfILoQUN/6KaxABPoKxN/nm5VYAAD/jIkuDACAPAECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACg2FiA2K6X1SYzcTGcGry4XG+HL2yq+k3b9bJ9PfhnPONiMb6CWbbrZX4R3SrbzUn/P7ctee3s2/VyfKbM/HOWObHhE3scvnty/k0VfkbDz7PwKAHwzxqvQGyqxaLaTLaSy/W2b1n6AJE0NmGAqKpls9DmvcuqWu5vROfarpeL5XIkQjQbsqkW1abfxGxSSlvawUKmNmD09bctc0+AGISA4fxTwWUYYkqOEgD/rKkujEFTlK9ANM1MGyDaZnJwMltP2K6Xi2q9Xi7Xm/b3yRPsAk3kCf4Rb3quxUynt9vytmpBZsXJq+XLTA56crzao92Hk2CGYTDZU4EoPUoA/LNmjIEYbffiDom6NYpOWnMBonttuYxzxjttqrBdG+tPSXtJggY13pC3VAum48PMZcZHu228+3CwWCyrzXA3ZwaIeWYfJQD+WfkA0bZimdP4yTEQ2b74tAsjbiCHJ73lbV7QxvaN+KA3YVMtFovlel116We7rpYjrW15tWDTL3dE4TKbA9gcoGqzqZL56ldKAkTwGUVJIJix6CgB8M+aqEC03eATmsJDbvpEBSI8p46mBi/P0dbuw1Y7rgL0bW4/vd6coFlOW+C3aEoB9UL2VSLmibqC1vFedqtcllQgosyQfhqb7fboRwmA87EvQDT/SFuNTC0ibTbHAsR2vazW/bnzMEAUGDbVwylhb0Zms4PxnEE3wQxJuaKNKWEI6mYpX2a/pf0Gxpu+qeqxjjMDRJTa2tk28WYO1j1+lAD4x80MEKOt3UjTGI6OjALEuupeqwdRhm3uARqnsbP/zD4EgaE/kx9b6OSVkeHQy3gcxXiXxuQyk9CT9s5kljIdIDL7GPZ/RPvy5qMEwL/koBWIaK5cgAhiR9O73lzXuTt2gEg2OdrYePxlZvZhu9oPJEhLEcmCotGcs5aZjgCNx54OyhAzAkT/f23NJ8oG0aYVHiUA/lX7AsR2XbUD6sbr7bvJ8ZUjV2HU/8xctfEuowFiu9mE4zWScRLp7sTN5Ui1YDh5usQ/Z5mDrobkuCQvz+/CaGZZt6NCksPdRrqCozQy0haAf8J4gOgG0O2vQEzePimpQETV8XXQ3B+7ArHrmryqavsW+k6GqGGux152c83v+p+YceYys2M4Mh0NzTxhgNiX8ibvAZFeh7H3KLXvNywC4N80HiD6JiVsI/qGKrpzwfSwg5EWfZBCjj0GIu1iyUyJQ83U6MeS+1du3rDM/vC9dXRGrgIRd1qk655/lLYqEAD/tokuDACAPAECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQLHJABHfyTCcPHH7w4mnYgznnLz3ZLqkyfknb9QcvrndqfT/37yZ4Tr37vnkrbbftNjhszJyDwZ7274XbG12xcOlTd9Yc5fdpuxW7H9C+oxnqk2b+cHvXeJwhux/QWN3I+/lH1bXreNwnzvADF84QAwWlH8qxBzdU0XrJ3tUm+gZXvu2drIJTx9fOfIsy35BRc1d9xjt0fWPrCXz3O837XvJsy5G4kbmlubDAxE9hiQ6LtX4Y0uHO/iOzRya/Puc+izjd2Xzw7vb72N/7gD7jASIeS1z/HToPfMNJd+syfd1+w054zmT4ezZRY9sZbUZTO8eHrVH/CSx6KmVw62ND2l6NCaek921daONXvPI1MnGrGDfZ3yY+ffuPU7RYRr55JsjEXyU7Yn1/mLAWKM87y95/h6FWza2wuhZ7IPDkXmoXPkjYA78uRevH+AAFYhMR0O+4yH+Km+/yPrmdrFYVpvwm3f2g6rnq7ch195nHzE+vpS4+cvMHzd5QUgITxSHj6pKtjVuinI16vlf/7P2/Q3mvXl/gEie2ZY+6nNTTa5lIkDs2bqRKLDnWWHzKhDRseka/dn9clOb/OmfO/Cv2xcg9n5Fzg8Qg0ndA8PrR10ny1gUBYhgrcMv7WBv6qdtNgvfrqvluzNJ/ut8T7u1bzhAkCz64kNao06O0tTQgaJ9n3qiab6l3dOjNfjj2YzUnmaUCybi1uyBIvtt18vletP8T3a5sysQ0d/icpn+qbyhDT/W5w5Q5AMrEIP3b9fL5rtt2Gncf9POCRDROrpfmlZ4s92G36r1W4PwkqymsJTdbs7kMYheCM4HszkieaZ2vOw+a8VHabjKaI9n7nv4AWQH+Y3lir0tfRx+pjuvokVnX5g79qV7c34N9YHIjs9s+hranJutMM3428iG2eiPN+mv2b8zR/zcAUp8fAWif715ZdAwbap63NfMAJH2A7Rnj5m2IdMW9Bsx/l0644s23Ilh+zs6/iHYg/rl9aCVHrbb9fLX1XC4QFxG2DeWb2Lfx1aa2fpc+5pp1ZbLpvXKvN51YRTGgmSL51Ygkk9ju00/qsHfW2bn91QgmgOYGwMRL6+4CLA55ucOMN9hKhDzv/HDr+Kocp0ZPj4nQCTnY/0GDaseI1uVWUKysnnftO1OjI+JnHfSOrbcsRfDs+x+xmRAQdm+Z9Y6uhWjYzPiRq1ar5f1/2RO6veX8ffPsTdADFrx7DKS4bFRLSHsNpj5Jz/WnRYNHH1DL8LRPneA2fIBoqREXFKBiFub4JW0e39mgEjG2gVn8v0XY1CQzn/PZpv8dO5E/ju/mW+sQSiu1HcLnRUgwm1Olli275kXRrcwv3XpKppz8e4jyweImZ1Ho8f+jWMgmo1td3hkK9o/oYm11PmjmhoDkT1U7wwQh/3cAeaarEDUwhJvXO7Nzz7Z/598vaWFg0yTNWMMxKZqB4oFXdfJWrabTXhdWzKqIG2X4nEIsysQQa7KH4CjBoj+0KdDRIr2PVhYX2YfLddntzw+D+6GbMwcA5HvMHhvBWLs/aN/r/PHN0bBMW3bpwPE+Nr3rfHAn/vUnwJAzlSAGJ7QbzdV5hx/+K55Y/iHX9DBPGGA2HciOvJ12r0YjUlv703UnnUGxYugwLtorg1py8wTLclmMBJypBJx5C6MaD2Dd8zc94yx0Q9JwX/PJg8CxPT+J4vY25bvaYgn3j/+4e5babcX+dJZNMvwj3bf2icd+nMP6kPqEsBMU10YU18l2/wA9t2cc6o+Ekw3y9Ovjg8cy31rxyWFbq7BlGQY40Sb3ySMfV3qwQxHq0BM9jjlLnQZ2/fNvE6EZt+HixxvKEsqENlljhygYNcn/+imwltpl1O7rOjF/IbkKxCZERkzu2/ieH2wz32rAgGUm9GFAQAQEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoNh4gHi+ubu8WD38SSb/ur24u7y4u7z5NfrOPy/XmTcCAGdjNED8fbi6u7x4fI6nvt6vLusAMXip8eflenoGAODk5QNEW2Zof67v/+52u93T4+XF3eXVy3MdI8aKEG2GaN4FAJybsQrE02OYAF7//G1jQd03UdcnRjNEW6jQkQEAZ2k6QFytLi/ubp9+PVytLuOaRP9z9fKaef+ehAEAnLKRAPF6v7q8WN3e1AFi93q/ykeBp8d6hqHnGyMhAOBcjQSI55u7y4vHh/smQDSjH9qf2/uX64vVw9PL9WiNoR9FYSQEAJydiUGU7WDJLkD0/9gbIKLAoQgBAGdm1lUYq4f7ogDRDIC4fer+cezdAAA+0uSdKF/f1oXRzPz4vOuv/MwNtAQATlRJgJhXgWiqF13VoR5NaSQEAJyRQweI5uKLsOQQ3UACADgDJWMg9ndhhJ0Xgea+UjoyAOBMvK0CUXdP/IkDRDtOIjdk0n2lAOCcHCpATKWH2ozHeAIAp6EoQNw8tk+4aCsKzciGdOBkXvuQLVd1AsCJmwwQAAA5AgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAECxWQFiUy2W6+2cObfr5WKxqDaTM0y83M1Uz7OpFpHune1iujkzi1iut8GG1xPqZVabzP9n3p7ZgtbM4zHc+f17vzu7o9S/ebhjuQXP2v3BO974oexZ6OR2pP9hDP5DKTueezal8Jj8WzbV4f8AgGlzAsTM/FB/yU03tuH3Zq7VaV/cVItFtYnXXL+3ntQ3MSMb135zh21Rt4BqEzVpme/lwRd//tUio8dncKDO7SiFL6fhIPPWZrdm21SL9jgcsAnZrpeL5TIXIbIf5HK9zR+GguM5uSnJjuU+0W7DkmWPTf8ch9jy7PTcYQKOKB8g9rd1w5Ys899u+80eLLba7Nr/0tfJF0nctGyqbpbmhXzTONLepG18do+qzWD6cr0Jp1TVgSoQ2/Vy7pvO7yjFDWvcgAwa3bFqRv6w139i63Y/Ztd49ukO1+Rxa3alPs7DDa/Ws4/n1B9GsgndeuJ3hXPN+fcnONCWj+/RJ+8f/Gv2ViD21lr7877BifOgnBudDqdnIl1z1y9nM6dp3O222+10u5OczycNcFK9j345TAWi+WKbyGXd8s7xKKUvJ38oSUFitDmND0XSa9Gv7f3l/ngjMie2IzWIzXrdFRjCd8w6npsqShzhjmWOyGDq8ODkak+TnUOzm9+xTZ21zHdv+dQeKULAR5oOEBMtXv6bpmugsu1J3FqOF+e7r4E9TWO7yMxXRuabssk066p7z3ZdLbtv+qglyzaN5V3zw6MTNHKZtZ3pUZoIoWkgmfhTCxqHprQ1Foea4PWmFBGUivrGL1vYyJXRN1Wa22Yfzyhy9/s60iSmk9OGuv19bHqkPY5zm96RTZ23zPdu+fQeSRDwgSYCxMSZ3LBFiFqpiSFtwTtHz637F+ecW4+UAzJntt0JTF8MqDabqmstBqe3/Rf/SCtVJjzx3IZDFwe9wmd2lCYCxKAYkeSPeBf2H/SkeZnbF9dtZ/i5Dsvj3a/NtoTHP1xj8MHOPp4jDeFIWeAgAWJibEQ+m4XFkpE2e+94i+MGCL0Y8IHGAsRYt24n7IRcxF+ZU188ce/3RO9+MEvT+E03jUlTUVW5YYOZVfQLD89uF8FZ6AEqEJM9B5lm7MyO0niAGESn9O1JgNjbm/b2s89hyzNSfq+q5eAPervZBDWGPiiMbfjgeE4FiNw+vT9AvLVEM76p85Z55ADx7jIhMFs+QLTf+GPf/JnpbYuSq4gHdeAgf4wX53dBgOnP8OacW0c94cNu6Fyq2a7r0fZpM922BPnz6zd8RyWtRRwShmeFZ3SUBmWG3CHJ7X+0lLRpmKwuHKKMPX4yO6ew0TZ2c4/nRweI9rfoD+otBybZlH3LFCDgbEyPgZhRgUg6LAbd+eP/MU+dW4f/HnznZZvGTVVtotX3Z4f9yXdS+w/2cnge3Bffp3oY5gvb6u12G36PTi3vHI5SWL8fFrvjd402AFGvQXpAB7MeN0DkZs2vcf7xfF8XRrIF/WrHpqc7mnwSb+7CmFjmgbZ8eo90YcDH2Rsg5lYgOv3ZWW6WoNWYaBqDf26qutI+Ne9yuexrx4Oz/Kb52my2wYnjnrOwqMQ8P0BMfXvN6MYYlCHO4yjlkkI3VGCbjE+cqjM0KSRXVIl8TIBIjmL2oyw4niOtcr55zkwO3z/n38X7OzbjyBaOLfP9Wz61R5MbAxzWmwLE2Fli/pwyWFh6kjPS3LX/6lqZXW6oVtB2dq9E6aX5conOhBeLpqVt6/1hr3VS5N80K5nsRZhzXPZJSvxndpTS7/R4gEA7Id/HkQqX9YldGO36R7qkhouZcTzHWuXcGfvYX+JY98EbuyrGFASI7GYcYMtHpssP8JGKAsTkuVTJt/bUd399MlsPxx+cqQRd7cl5aDa89G1V2i4PGsNd++3T3iKpvzvR7ApEWdfG3gN3hkdpuLjhvNOlmiS+fEYFYkYtqTn41ezjObW1qvJzOVLwoaYDBCXeNDQC9nFePYvDBB9MgIAvb9+AZIbFM+DYBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACg2ESBy9/PbTDyv92D3cZm4keDk7YsHt1jsn9+Uu3ng2Dr2POjj8Mckc/+8qVsjB4t2YwAAPsl4gBg2UPWUqYZr/61kuwSQvRf21G2BS9rKbi2jz7vc9/CC/OqOcUwGz5zK7vzc2yeLFAB8iHyAyDz1Jjz33lMimHo09ZwHAx7oUQZhSJgMEHMa50ETfphjsh15koQKBABf22gFImpyB03ssqpG2suJgn7cKqaPipxUFijSc/n8CXwYIOa1xIc+JuEiMk/EShe17zCJEwB8mLEAsanqZjd60PNglmwjt1zm+/3TmsNoDWLkZH7v+IekLd5UM4NHs4Pj7XOfcw59TNr9qhc2tgX9+vMBLNgJAPgQIwEibiaDhq1rpLKtfDNmMF9dHwkQ7+rdn6jjt8utNqPRo08a/TK22+Bx0YswghzjmBT1RAgQAHwZ+QARtbjL9brqOuq7JnTseoTuXHri1fzv3dR+hXnBwqOz92hhm2q5XC6WVRU1s9kmPnzrZr1cxvHi2Mdkud7USx65WCQeNlIcsQDgGCbvA5E/2x5rLONT4mFzOSNAdItIy/pxBojO+dtfoismt+vlcr2uN2ETpJFcE79dLxdVNd04p3WIAx2TeiHDhY8tIJosNQDwefYFiMVisaiqGWfbgxEHw1sgTJbgcz0GmQYyedcgTSQb2iwu34fRJ49cZaAvSkRB58DHZHy1+aPUL7V5Zf+VswBwePsu45x3tr1dL0e6I0ZrDtFrfZs4aG+nr25M29d6hu26Wm+zfQaZsJA9x+9b8m47j3RMoltj7AkQUTUmvYol2K9g+AcAHMXMLozwbLvWN5YTF24OI8CwcQta1HqZzRzhMIf6DbNa/2AbZwWI/B0XxockHvKYpEWXkVEO3SUi0QLzFZxmyGjzloPcTgMAhmYHiHXXXR/dTHLGtZJTjWmkWfCcWfuWdmLlbQs6PvhwuV7HSWH/co96TGaPgZh8RQUCgKPzMC0AoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYjosuxQAABKYSURBVAIEAFBMgAAAigkQAEAxAQIAKCZAAADFxgPE883d5cXq4U8y+dftxd3lxd3lza/pBb/ery4v7i6vXl7fv5EAwNcyGiD+PlzdXV48PsdTm1hwkXlpl51TgACAM5QPEG2Zof25vv+72+12T491Jniuw0FchHi+CeYcBog/L9czYgcAcArGKhBPj1Ea+PO3TQB1p0Zdn4gyhAABAP+M6QBxtbq8uLt9+vVwtbqMaxL9TxsRBAgA+GeMBIjX+9Xlxer2pg4Qu9f7VX7U5NNjPcNOgACAf8hIgHi+ubu8eHy4bwJEM/qh/bm9f7m+WD08vVwHvRh1gNj3I0AAwBmYGETZDpbsAkT/j1yASLgKAwDO16yrMFYP9wIEANCZvBPl6/wujGaGvodiGCCaPo59d6ACAL68kgAxVYEQIADgHyJAAADFSsZA6MIAAHa73VsrEE+73a69tYMAAQD/nAMHiBk/AgQAnLyiAHHz2PRo/GmfhZF53vcoFQgAOBeTAQIAIEeAAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFpgLEdr1crrf7l7FdLxcTZi1jU40voNq8dQu362X07sn5N1W4qelbgzdvqvqV9P+z+xS8Ui9gu17GhyS3Uelb924uAHyoqQCRNIxpTuiar7gFnPptcl35+cZa5zlLH4SA4fxTwWUYYuqN2VSLatNv13a9jLcwu8w6OtRrjzJENqksqs1wenyMRvLOdr1MM9uMNAIAZSYCRNqmR61v+MunViCGp/iDHeh3JJhhGEz2VCCye1ltxnNVbmun40u1GRzY3P7s2dztehkes0HFAwDeLxsghq35cr2dDBCzKhCbarGo1l17G7VqsyoQ8Xa1jXcfDhaLZbUJtnDRdTnMCRDz1NvQvzXY8H7pg7CxrKpB/Ij7QzI72LwvPH5zAkQUIZI00a8g+lT2RzUAiIxXIPqWrfnXuysQmyr4LTkxLqxANKtv1lxtBlX6+pWSABGfw/ebFszY7MC66vZru66WmUXG5YuoErKO1xt0h0wMpej2Y1Lw7k1Vb9+mWsT5K9yVahNP264rlQoA5hkNEFFruFxvpwPE/ArEQUrrbZu6XS+b9jxe0na9XCyXJRWI/M41FY7Ndhtuff3WILykqxkPEOHYiX5RwWjMQRgYHeaxp8elXVa2VrJrd0f/BgBvMxYghvlhPEDExl/JB4g99YvM+XXfWDbrihe82+02Vd0szwwQ6cDD7Xq5XG/Wy0z1Yzi0MdiI8ZpM3wUUBYhovuV63UeRLlb0m7wZ1C7C45wfs5FEjOEh7aaKEQCUGAkQfQ9AtvWNyhJzWv/2DHxeBWLyCsXwfeGVlYO2fmaAiKsVyd7Hi8vuVXYJ8UHqFjrSUZGvQLwzQKTHZOJ4SxEAlJq6jLMr0ne/7qlAbNfLRbVuuhWG/fmTASJsAIdtdVQsyG5FMlpwNzNA9P8X56Fc2xy10VH73Q45SPZ0u152oyDbN7cxIO3bWSwWVXXICsQgVOVCVkh3BgDzzQgQbfs9FSDqJjAaKpFerjAdIKImeKwCMbjHwWC8xSJe5OwxEO34xuGllP27tpvNNii4DC9tCPJP1OnTvCm+6qJfY//eo1Yg0vtBbNfVehuOm9wXMACgNxYgosa4H3CX7ZZYpKXyzNUV6Yj/KEDULVtVBQvNBYhhC5e/s0J/8cj01QtpgBgbkZhehxFua39lySDdxP08SXBJqxlNgIhDRryL+y7CSA/OSLdO9vPrJwDAHNkAkS9mv3sQZV7Uzk0MqUhrGXsbvcmRFLkKRHw6n667jwrRXIMpcVdI2D+SLDoqYXQBYt3VcqJl7JUZ3QkARzPVhQEAkCVAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACg2+TTOWbdOzj8mOl5U5sbMvfgRDVnTN5UEAD7Y3ApE+rzJXnIP5e7X8AGXwQM9h0+zaB6zMXiQQ/xEjckHd+bWDwAczf4AET68IVcsCB523T7BIRsgkmdBpU+9HD7esyBAJM+aECAA4LimAkT4pM2gXU4ewDk3QOySB1gNHi65rKo+Q5QEiGo9VuQI1yFVAMDB5APEoGNgeGK/XS+7MsLMALGp6iJGtUmehRmtePoR3GkcaJ7l2SeMaHWLsMAhQwDAobz/Koygi2I6QMTRIUgIk0Msd7vd3gpEEGPCPDPyqG0A4L0mAsR0ESBs9dsAEbXkaYCIrtZYrtdVV2roYkUfIJIKRXIVRtKf0hUcwgDTvxDujxoEABzCdIAYOWNPr8xsGv/pANEvNVOBOECASC7oECAA4HjeHyD6SYvslZ7DALFYLBZVdegKRDNbVSUBJnyTLgwAOIjDBIi2ca7TQfyu4WWcR6pA7LoYYxAlABzX+8dApG1zesup0S6MsALRzdoHiD2yASK9raXLOAHgKN5bgZi+Q2Wm7Q4DxLorWHQzz2rm3SwKAD6Xh2kBAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoNhEg/rxcX9xdXr28thNe71eXN7/a3/4+XN0Fv7ZTLh6f5y3w+ebu8mL18CeZ6dftxd3lRbLk4XKGbwQAPsz8AFH/enF3+7Tb7Xa7p8fLizgBNPM/3l7dXV4EP10UiBaYTxuv96v2jSNBpN2MqaQCABxXSQWiCQ1XL69N89+GieDV6/u/bRWha+D/PlzdXV69vPYLbMsM7c/1/d9w+c91jBgrQrQZonkXAPDR8gGiyQfdz+19d94/+Im6JO5un4bJYxggwrSx2+12r3/+trGgLmm0GzCSIdpChY4MAPgU4xWIppEOKxC73S5be9jt2qrD6uFPWKgI3pINEFery4u726dfD1erfDrJbEC0GVNDJQCAYxkPEHVFYW6ACIZEBOMY6o6GX8MA8Xq/urxY3d7UASIZnpkudhBWgs0zEgIAPsFYgOjGKs4KEF2Xx+rhT920Pz63NYxsgKjnebhvAkSbP8Iek9XD08v1aI2hH0VhJAQAfLiRABFXER6fB6Mi4vGPXXO+evjz6zYqM9zdPo0MomwHS3YBov/H3gARBQ5FCAD4YPkAEVwlUTfzyYCGTAVidX11d3mxerhvm/abX+2wyr1XYTTvmh0gum0YG5ABABzVRIC4WqWXce52Y2Mgnp/quLC6vVl10SGqXiSDKHe7XV+iKOzCaGZ+fN4NB2wCAB9g9DLOtv2eexVGcmfJtsbQ3TRiRoCYV4FoltxtQB1WjIQAgA80Mgbi+elX5kZSu93sABG264cMEJlrQ6IbSAAAH2DWnShHR1CG10FEAaJp1OvhjXPHQOzvwgg7LwIjt6wAAI6k6FbWu928CkQzT9qtML8C8RTM3wWIdpxEbsik+0oBwEc6QoBoehmGbfmftKJQECCm0kNtxmM8AYDDOHiAqDsjsgMXBiMV0gBx093OMroz1XDg5NQGu6oTAI5uIkAAAOQJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBi+QDxHwDAf//9999/ZQHifwDAP0+AAACKCRAAQDEBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAECxIwWI3z++LRaL7z8Hkzrffvyup//8npkIAHxlRwgQP78vFt9+/Pg+DBD78sHP9D0AwJd08ADx+8e37z//lwkDMwLE/35+V4QAgBNwtDEQbwgQv398U4AAgFPwoQFibLBDNwxC+QEATsLHBYj0xVxYMAgCAE7C5wSI0VcNggCAU/ApAeL3j2/ZF8emAwBfy+EDRHhfh8WiuxvE2BCIiaERAMAX5U6UAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKDYkQJE/Yis6MGa0VOzhs/Nql/2NC0AOAVHCBA/vy8W3378SB/n/fvHt/F48PvHt8X3798FCAA4CQcPEL9/fPv+8391jJgbIH7/+Lb49uP3TwECAE7D0cZAzA8QTXz43/8ECAA4ER8aILIjIPrYIEAAwIn4uACRvlhnhTA0CBAAcCI+J0B0r/78vhgafxsA8CV8SoD4/eNb7kUVCAA4EYcPEIOiQp0UxoZAxO8UIADgFLgTJQBQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAodpQA0T9Py8OxAOAcHedpnE1uGHlsNwBw4g4eIOJncv/+8U0VAgDOzqEDxM/vfc3h949vi8VCDQIAzs4RAsS3H7+b6ND8S4AAgDNzjApEOHhSgACAM3ToAJGMmzQGAgDO0VGvwohGRAAAZ+MY94FoB08aPwkAZ8qdKAGAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoVBwgAgP+KAgQAwAQBAgAoJkAAAMUECACgmAABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKCZAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKDYRID483J9cXd59fLaTni9X13e/Gp/+/twdRf82k65eHyet8Dnm7vLi9XDn2SmX7cXd5cXyZIzXu9Xl/HmAQAfZX6AqH+9uLt92u12u93T4+VFnACa+R9vr+4uL4KfLgpEC8ynjSYWXEwGkXBOAQIAPkFJBaIJDVcvr03z34aJ4NXr+79tFaFLAH8fru4ur15e+wW2ZYb25/r+b7j85zocxEWI55tgzmGAaPLNntgBABxCPkA0+aD7ub1vyg+Zn6hL4u72aZg8hgEiTBu73W73+udvmwDqkka7AUGGECAA4MsYr0CM9BHkag+7XVt1WD38CQsVwVuyAeJqdXlxd/v06+FqlU8ng4AiQADAFzAeIOoGe26ACIZEBOMY6ib/1zBAvN6vLi9Wtzd1gEiGZ6aLrdclQADAlzEWINohk/MCRNflsXr4U7f0j89tG58NEPU8D/dNgGjzR9hjsnp4erkOejGaQLPnR4AAgA8wEiDiKsLj82BURDz+sRsUuXr48+s2KjPc3T6NDKJsB0t2AaL/Ry5A5LfQVRgA8AnyASK4SqJu5pMBDZkKxOr66u7yYvVw39YSbn61wyr3XoXRvEuAAIATMREgrlbpZZy73dgYiOenOi6sbm9WXXSIqhfJIMrdbteXKGZ0YTQz9D0UwwDRrHTfHagAgHcbvYyzbb/nXoWR3FmyrTF0N42YESCmKhACBAB8ISNjIJ6ffmVuJLXbzQ4Q4UUTAgQAnJlZd6IcHUEZjKOMA0R0UeXcMRC6MADgRBTdynq3m1eBaObp7tkwtsDRCsRTML8AAQBfzhECxGhD/ie9qqI8QMz4ESAA4OgOHiDqzojcc7C6O0110gBx093OMroz1UwqEADwUSYCBABAngABABQTIACAYgIEAFBMgAAAigkQAEAxAQIAKJYPEP8BAPz333///VcWIP4HAPzzBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFDtsgPj949ti8f1nOOnn98Xi24/fR90JAOBjHboC8fvHtzAvJL8CAGfh8F0YQWZI48PP74tGFCp+//i26MT1CwDgKzrGGIif3+sc0P5/PDX99+8f36QGADgtRxlE+fvHt8W379+jYPDze9q10byYGTcBAHxtR7oK4+f3pJ8i6qZIuzH6FwUJADgFx7qMMy445CZkKEYAwGn4sACRjIjIMx4CAE7CxwWItBsjHAKR6dYAAL4ud6IEAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQDEBAgAoJkAAAMUOHSDqZ2P1T9Sc8xRvAODEHCNAfPv2rQsNAgQAnKFjBIjvP39+b1NDGCDCJ3f3NQoA4OQcJ0D87+f3JiJ0AeL3j29xlFCYAICTdaQA8b/fP+pujDZAtNNbujYA4IQdK0D87391N0YbFNLAkAYKAOCEHC9A1N0YKhAAcIaOGCD+9/vHt+/fs2Mgfn5fyA8AcLqOGSCayy6i2NCQHgDglLkTJQBQTIAAAIoJEABAMQECACgmQAAAxQQIAKCYAAEAFBMgAIBiAgQAUEyAAACKCRAAQLHiAAEA8F9RgAAAmCBAAADFBAgAoJgAAQAUEyAAgGICBABQTIAAAIoJEABAMQECACgmQAAAxQQIAKDY/wN0+rqhZOUtvwAAAABJRU5ErkJggg==" alt="" />

-------------------------------------------

AC代码:

 import java.util.Scanner;

 public class Main {

     public static void main(String[] args) {

         Scanner sc=new Scanner(System.in);

         while(true){
int n=sc.nextInt();
if(n==0) return;
System.out.println(solve(n)?"Yes":"No");
} } public static boolean solve(int n){
int m=n,s=0;
while(m>0){
int t=m%10;
s+=t*t*t;
m/=10;
}
return s==n;
} }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=39

NYOJ之水仙花数的更多相关文章

  1. C语言 · 4-3水仙花数

    问题描述 打印所有100至999之间的水仙花数.所谓水仙花数是指满足其各位数字立方和为该数字本身的整数,例如 153=1^3+5^3+3^3. 样例输入 一个满足题目要求的输入范例.例:无 样例输出 ...

  2. Java程序设计之打印100~999的水仙花数

    package printDaffodilNumber; /* * 题目:打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身 ...

  3. 51Nod--1015 水仙花数

    51Nod:  http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1015   1015 水仙花数 基准时间限制:1 秒 空间 ...

  4. js查找水仙花数

    所谓水仙花数是满足类似于153=1³+5³+3³: 第一种方式:把这个数当做字符串来实现 <script> for(var i=100;i<=999;i++) { str_i=i.t ...

  5. java 实现(代码) -- 水仙花数 + 杨辉三角形

    /* 在控制台输出所有的“水仙花数” 水仙花:100-999 在以上数字范围内:这个数=个位*个位*个位+十位*十位*十位+百位*百位*百位 例如:xyz=x^3 +y^3 +z^3 怎么把三位数字拆 ...

  6. 编写一个Java应用程序,该应用程序包括2个类:Print类和主类E。Print 类里有一个方法output()功能是输出100 ~ 999之间的所有水仙花数(各位数字的 立方和等于这个三位数本身,如: 371 = 33 + 73 + 13。)在主类E的main方法中来 测试类Print

    package zuoye; public class print { void output() { System.out.println("100-999之间的水仙花数是:") ...

  7. hdu 2010 - 水仙花数

    题意: 数学上有个水仙花数,他是这样定义的:"水仙花数"是指一个三位数,它的各位数字的立方和等于其本身,比如:153=1^3+5^3+3^3.现在要求输出所有在m和n范围内的水仙花 ...

  8. C语言与水仙花数

    C语言与水仙花数 水仙花数:前提三位数,"个位数的立方"加上"十位数的立方"加上"百位数的立方"恰好等于这个数. 我们来用C语言书写水仙花数 ...

  9. 题目:打印出所有的 "水仙花数 ",所谓 "水仙花数 "是指一个三位数,其各位数字立方和等于该数本身。例如:153是一个 "水仙花 数 ",因为153=1的三次方+5的三次方+3的三次方。

    题目:打印出所有的 "水仙花数 ",所谓 "水仙花数 "是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个 "水仙花 数 ", ...

随机推荐

  1. HDU 1232 并查集/dfs

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=1232 我的第一道并查集题目,刚刚学会,我是照着<啊哈算法>这本书学会的,感觉非常通俗易懂,另 ...

  2. 关于JavaScript中的创建对象的学习总结

    一.最简单的对象创建方法 在JavaScript中,直接使用Object构造函数或对象字面量都可以很轻易地创建单个对象,缺点是:创建具有同一个接口(标准的OO中的接口概念)的多个对象时,会有大量重复代 ...

  3. Unity手游之路<二>Java版服务端使用protostuff简化protobuf开发

    http://blog.csdn.net/janeky/article/details/17151465 开发一款网络游戏,首先要考虑的是客户端服务端之间用何种编码格式进行通信.之前我们介绍了Unit ...

  4. 新技能get——斜率优化

    好久没写博客了……我终于回来了…… dp总是令我很头疼的问题之一,然而我还是要学一下怎么优化它. 下面请看一道题吧: [bzoj3675][Apio2014]序列分割 试题描述 小H最近迷上了一个分割 ...

  5. HDU 3999 二叉排序树

    The order of a Tree Problem Description The shape of a binary search tree is greatly related to the ...

  6. JQuery发送Ajax请求出现 500 Internal Server Error

    ajax返回,readyState=4,status=500,chrome f12提示,提示服务器内部错误 我采用 http://q.cnblogs.com/q/69745/的解决办法根本不行,也不是 ...

  7. JNative library not loaded, sorry ! win7 64位系统

    java调用动态链接库时,使用myeclipse或者其他IDE工具时,针对于web程序,会报这样的错误: java.lang.IllegalStateException: JNative librar ...

  8. Linq to 泛型集合查询集合包括大写M和年龄小于等于18

    #region Linq to 泛型集合查询集合包括大写M和年龄小于等于18            //List<Student> list = new List<Student&g ...

  9. JStorm集群的部署

    JStorm是一个类似Hadoop MapReduce的系统,不同的是JStorm是一套基于流水线的消息处理机制,是阿里基于Storm优化的版本,和Storm一样是一个分布式实时计算的系统,从开发角度 ...

  10. 安装CentOS 7时出现No Caching mode page found问题的解决

    将CentOS 7镜像刻到U盘之后,向服务器安装时,使用U盘启动会出现两种启动选项,一种是UEFI启动选项,一种是默认的启动选项,如果不使用UEFI方式安装,那么一般是没有问题的,如果选择UEFI方式 ...