Hilbert space
Definition
A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.[2]
To say that H is a complex inner product space means that H is a complex vector space on which there is an inner product
associating a complex number to each pair of elements
x,y of H that satisfies the following properties:
- The inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements:
- The inner product of an element with itself is positive definite:
-
- where the case of equality holds precisely when x = 0.
It follows from properties 1 and 2 that a complex inner product is antilinear in its second argument, meaning that
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be bilinear: that is, linear in each argument.
The norm is the real-valued function
and the distance d between two points x,y in H is defined in terms of the norm by
That this function is a distance function means (1) that it is symmetric in
x and y, (2) that the distance between x and itself is zero, and otherwise the distance between
x and y must be positive, and (3) that the triangle inequality holds, meaning that the length of one leg of a triangle
xyz cannot exceed the sum of the lengths of the other two legs:

This last property is ultimately a consequence of the more fundamental Cauchy–Schwarz inequality, which asserts
with equality if and only if x and y are linearly dependent.
Relative to a distance function defined in this way, any inner product space is a
metric space, and sometimes is known as a pre-Hilbert space.[4] Any pre-Hilbert
space that is additionally also a complete space is a Hilbert space. Completeness is expressed using a form of the
Cauchy criterion for sequences in H: a pre-Hilbert space H is complete if every
Cauchy sequence converges with respect to this norm to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors
converges absolutely in the sense that
then the series converges in H, in the sense that the partial sums converge to an element of
H.
As a complete normed space, Hilbert spaces are by definition also Banach spaces. As such they are topological vector spaces, in which topological notions like the openness and closedness of subsets are well-defined. Of special importance is the notion of a closed
linear subspace of a Hilbert space that, with the inner product induced by restriction, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right.
摘自:https://en.wikipedia.org/wiki/Hilbert_space
Hilbert space的更多相关文章
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- Reproducing Kernel Hilbert Space (RKHS)
目录 概 主要内容 RKHS-wiki 概 这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了. 主要内容 首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质. Hi ...
- paper 10:支持向量机系列七:Kernel II —— 核方法的一些理论补充,关于 Reproducing Kernel Hilbert Space 和 Representer Theorem 的简介。
在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间 ...
- 希尔伯特空间(Hilbert Space)是什么?
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...
- 希尔伯特空间(Hilbert Space)
欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- svm机器学习算法中文视频讲解
这个是李政軒Cheng-Hsuan Li的关于机器学习一些算法的中文视频教程:http://www.powercam.cc/chli. 一.KernelMethod(A Chinese Tutoria ...
随机推荐
- iOS-打开word、ppt、pdf、execl文档方式
这里面包括下载和打开文档的操作:需要先导入<AFNetworking>的框架 第一步:创建一个显示文档的view:ReadViewController (1).h的代码如下: @inter ...
- 微软 .net 你更新这么快IDE vs2015 、语法糖 6.0、framework、‘吹得这么牛,然并用
好久没写吐槽文章了,因为无尽的加班,也因为工作的变迁,又因为最近看了微软又尼玛发布什么什么,好受不了. 今年大专毕业第八个年头了,人也到了30,真是光阴荏苒啊.最近这一两年发生了很多事,让我自己倍受打 ...
- Mysql常用命令行大全
第一招.mysql服务的启动和停止 net stop mysql net start mysql 第二招.登陆mysql 语法如下: mysql -u用户名 -p用户密码 键入命令mysql -uro ...
- Elasticsearch(入门篇)——Query DSL与查询行为
ES提供了丰富多彩的查询接口,可以满足各种各样的查询要求.更多内容请参考:ELK修炼之道 Query DSL结构化查询 Query DSL是一个Java开源框架用于构建类型安全的SQL查询语句.采用A ...
- 关于Navigation的BarButtonItem的
(ios6.1)有两个controller在navigation stack里,A和B.A是B的previous view controller,现在top-level controller是B.要自 ...
- 批处理命令——set
[1]set命令简介 set,设置. [2]set命令使用 1. 打印系统环境变量.set命令可以打印系统所有的环境变量信息. 应用示例:新建文本文件,命名为set_sys,修改文件类型为bat,用N ...
- [attribute] 匹配包含给定属性的元素
描述: 查找所有含有 id 属性的 div 元素 HTML 代码: <div> <p>Hello!</p> </div> <div id=&quo ...
- python学习之字符串变量
1.字符串引用变量 name="Jasper" age=23 msg="my name is %s,my age is %s"%(name,age) print ...
- [问题2015S10] 复旦高等代数 II(14级)每周一题(第十一教学周)
[问题2015S10] 设 \(A\) 为 \(n\) 阶实方阵, 证明: 存在 \(n\) 阶非异实对称阵 \(R\), 使得 \(A'=R^{-1}AR\), 即 \(A\) 可通过非异实对称阵 ...
- [HIHO1062] 最近公共祖先·一(lca, 并查集, 二分, 神trick)
题目链接:http://hihocoder.com/problemset/problem/1062 题意裸,有个trick,导致我当年做的时候一直在WA... 那就是出现这种没有出现在关系中,但是依然 ...