Hadoop_HDFS HA 及解决方案
1. HDFS系统架构
HDFS(Hadoop Distributed File System),及Hadoop分布式文件系统
作用: 为Hadoop分布式计算框架提供高性能,高可靠,高可扩展的存储服务
架构:典型的主(NameNode)从(DataNode)架构,两者一对多的关系,一个节点对应一个DataNode,NameNode是整个文件系统的管理节点(文件系统的最高管理者), 负责对文件系统命名空间的
管理与维护,另外, 也负责面向于客户端对文件的操作,控制,存储统一管理与分配,而DataNode则是存储具体文件
数据类型:在HDFS上,有两种数据类型,分别是元数据类型(Metadata由NameNode存储在镜像文件中),所谓元数据就是文件除了实际内容外所有表示文件信息的数据,即MetaNode
另外一种数据类型则是实际的文件数据了,在DataNode上存储形式是块(block,Hadoop1.x:64M;Hadoop2.x:128M),每个块可能有多个副本(默认3个,可自定义),因为由于副本机制,提高了文件数据的可靠性
NameNode启动时加载镜像文件(fsimage.xxx)和操作文件(edits.xxx)到内存,并等待DataNode上报元数据,形成文件系统结构,一旦NameNode宕掉,则导致整个HDFS无法正常服务
2. HA定义
HA(High Availability,高可用性):系统对外提供正常服务时间的百分比
举个例子:Hadoop运行时会有两种情况
1. 是Hadoop正常提供服务时间(MTTF),
2. 是不能提供正常服务时间(MTTR), 所以HA=MTTF/(MTTF+MTTR)*100%
通过上面可以看出,HA能精确度量系统对对外提供正常服务的能力,也就是说系统的高可用程度
HDFS出现无法提供正常服务情况: 正常的软硬件升级,维护;客户误操作导致HDFS发生故障绝大部分是由于软件导致
3. HDFS HA 原因分析及应对措施
可靠性: NameNode作为管理节点,统一维护和控制HDFS文件系统,而DataNode存储实际文件,且有副本护驾,
也就是说NameNode成为了HDFS系统的单一故障点,NameNode能否正常运行决定了HDFS的可靠性
可维护性: 一旦NameNode无法提供正常服务,如果元数据没有损坏,那就好说,重新启动即可,
但元数据一旦损坏且没有任何措施,那么,NameNode的维护时间将无限大;
DataNode因为副本的原故,既是块文件损坏,也会很快恢复,NameNode也决定了系统的可维护性,
精确一点是NameNode元数据的可维护性决定HDFS的可维护性
4. 现有HDFS HA解决方案
主要是从使用者的角度出发,提高元数据的可靠性,减少NameNode服务恢复时间,措施主要是给元数据做备份,另外HDFS自身就有多种机制来确保元数据的可靠性,减少NameNode服务恢复时间的措施有两种思路:
1. 基于NameNode重启恢复模式,对NameNode自身启动过程进行分析,优化加载过程,减少启动时间
2. 启动一个NameNode热备节点,当主节点不能正常提供服务,切换为热节点,切换时间成为恢复时间
从效率上分析,第一种思路尽管进行了优化,但NameNode的启动时间仍受文件系统规模的限制,
第二种则突破了这种限制,现有比较成熟的HA解决方案有:
a. Hadoop元数据备份
利用Hadoop自身元数据备份机制,NameNode可以将元数据保存到多个目录,一般是一个本地目录,有个远程目录(通过NFS进行共享),当NameNode发生故障,可以启动备用机器NameNode,加载远程目录中的元数据信息提供服务
优点:
Hadoop自带机制,成熟可靠,使用简单方便,无需开发,配置即可
元数据有多个备份,可有效保证元数据的可靠性,并且元数据内容保持在最新状态
缺点:
元数据需要同步写入多个备份目录,效率低于单个NameNode
恢复NameNode也就是重启NameNode,这样恢复时间与文件系统规模成正比
由于备份的元数据在远程目录上,那么NFS在操作阻塞情况下,将无法提供正常服务
b. Hadoop的SecondaryNameNode方案
启动一个SecondaryNameNode节点,定期从元数据信息(fsimage)和元数据操作日志(edits)下载,然后两个文件合并生生成新的镜像文件,推送给NameNode并重置edits,NameNode启动时,只需加载新的fsimage
优点:
Hadoop自带机制,成熟可靠,使用简单方便,无需开发,配置即可
减少NameNode启动所需时间,防止edits文件过去庞大
缺点:
没有做热备,那么重启时,文件系统的规模和启动时间成正比
有概率在NameNode宕掉时,SecondaryNameNode并未做同步,也就可能一部分操作数据会丢失,重启后的文件系统并不是最新的
c. Hadoop 的 CheckPoint Node 方案
CheckPoint(检查点)原理基本与SecondaryNameNode相同,实现方式不同,该方案利用Hadoop 的CheckPoint机制进行备份,配置一个CheckPoint Node节点,该节点定期区合并元数据镜像文件和用户操作日志edits,在本地形成最新的CheckPoint
并上传到Primary NameNode 进行更新,一旦NameNode宕掉,可以启动备份NameNode节点读取CheckPoint信息,并提供服务
优点:
使用简单方便,无需开发,配置即可
元数据有多个备份
缺点:
没有做热备,切换节点时间长和SecondaryNameNode一样
有概率恢复的元数据信息不是最新的
d. Hadoop 的Backup Node 方案
利用Hadoop自身的Failover措施,配置一个Backup Node,Backup Node 在内存和本地都保存一份HDFS最新的命名空间元数据信息,一旦NameNode宕掉,可使用Backup Node中最新的元数据信息
优点:
Hadoop自带机制,无需开发,配置即用
Backup Node的内存中保留了最新的元数据信息避免NFS挂载进行备份的所带来的风险,Backup Node可以直接利用内存中的元数据信息进行CheckPoint并保存到本地,效率比从
NameNode下载元数据进行CheckPoint效率高,Backup Node在内存中保存,一旦有操作日志,Backup Node内存同步,并更新本地磁盘的edits,两个步骤都成功,整个操作才算成功,并保证了元数据的最新状态
缺点:
该方案还不成熟,NameNode无法提供服务时,Backup Node 还不能直接接替NameNode提供服务
Backup Node未保存Block的位置信息,等待DataNode上报,即便后期实现了热备,仍需要一部分时间进行切换,当前版本只允许一个Backup Node 连接到NameNode
e. DRDB方案
利用DRDB方案机制进行元数据备份,也就是在NameNode无法提供服务时,启动备用机器的NameNode,读取DRDB备份的元数据信息
优点:
比较成熟的备份机制
元数据有多个备份,保证了元数据的最新状态
备份工作由DRDB完成,对于新的操作日志,NameNode无需同步到多个备份目录,效率上优于元数据备份
缺点:
没有做热备,切换机器启动NameNode时间长
元数据的可靠性没有保障,需要引入新的机制去保证
f. FaceBook 的AvatarNode方案
一种热备机制,首先AvatarNode作为Primary NameNode对外提供服务,Standby Node处于SafeMode模式,在内存中保存Primary NameNode最新的元数据信息,两者依靠NFS进行交互,
DataNode报告操作日志时会同时向两个Node中发送Block位置信息,因此保证了元数据的最新状态一但Primary NameNode宕掉,直接由Standby Node接替并成为Primary Node对外提供服务,大大缩短切换时间
优点:
提供热备、切换时间大大缩短
集成在FaceBook自用的Hadoop中,并部署到了自己的集群
缺点:
修改了部分源码,增加了一定的复杂性,在软件维护上带来一定问题
参考资料少,只提供一个备份节点
5. 方案优缺点比较
Hadoop_HDFS HA 及解决方案的更多相关文章
- hadoop2.x通过Zookeeper来实现namenode的HA方案以及ResourceManager单点故障的解决方案
我们知道hadoop1.x之前的namenode存在两个主要的问题:1.namenode内存瓶颈的问题,2.namenode的单点故障的问题.针对这两个问题,hadoop2.x都对它进行改进和解决.其 ...
- HDFS HA: 高可靠性分布式存储系统解决方案的历史演进
1. HDFS 简介 HDFS,为Hadoop这个分布式计算框架提供高性能.高可靠.高可扩展的存储服务.HDFS的系统架构是典型的主/从架构,早期的架构包括一个主节点NameNode和多个从节点Da ...
- hadoop(二):hdfs HA原理及安装
早期的hadoop版本,NN是HDFS集群的单点故障点,每一个集群只有一个NN,如果这个机器或进程不可用,整个集群就无法使用.为了解决这个问题,出现了一堆针对HDFS HA的解决方案(如:Linux ...
- hadoop2.610集群配置(包含HA和Hbase )
.修改Linux主机名2.修改IP3.修改主机名和IP的映射关系######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机.阿里云主机等)/etc/hosts里面要配置的是内 ...
- hadoop高可靠性HA集群
概述 简单hdfs高可用架构图 在hadoop2.x中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态.Active NameNode对外提供服务,而Standb ...
- Hadoop2.41的HA的配置与启动
我配置HA机制创建了7台虚拟机 1.修改Linux主机名2.修改IP3.修改主机名和IP的映射关系 ######注意######如果你们公司是租用的服务器或是使用的云主机(如华为云主机.阿里云主机等) ...
- Hadoop2.0 Namenode HA实现方案
Hadoop2.0 Namenode HA实现方案介绍及汇总 基于社区最新release的Hadoop2.2.0版本,调研了hadoop HA方面的内容.hadoop2.0主要的新特性(Hadoop2 ...
- 一脸懵逼学习Hadoop分布式集群HA模式部署(七台机器跑集群)
1)集群规划:主机名 IP 安装的软件 运行的进程master 192.168.199.130 jdk.hadoop ...
- Zookeeper 三台主机 Ha集群的搭建
前期准备1.修改Linux主机名 2.修改IP 3.修改主机名和IP的映射关系 /etc/hosts ######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机.阿里云主机等 ...
随机推荐
- [荐] jQuery取得select选择的文本与值
csdn:http://blog.csdn.net/tiemufeng1122/article/details/44154571 jquery获取select选择的文本与值获取select :获取se ...
- csc.rsp Invent by Microshaoft
# This file contains command-line options that the C# # command line compiler (CSC) will process as ...
- linux下epoll如何实现高效处理百万句柄的
linux下epoll如何实现高效处理百万句柄的 分类: linux 技术分享 2012-01-06 10:29 4447人阅读 评论(5) 收藏 举报 linuxsocketcachestructl ...
- SQL简繁转换函数
declare @jall nvarchar(4000),@fall nvarchar(4000) select @jall=N'啊阿埃挨哎唉哀皑癌蔼矮艾碍爱隘鞍氨安俺按暗岸胺案肮昂盎凹敖熬翱袄傲奥懊 ...
- telnet时显示:允许更多到 telnet 服务器的连接。请稍候再试
telnet时显示:允许更多到 telnet 服务器的连接.请稍候再试 解决办法: windows自带telnet服务器默认的最大连接数为2,要想修改该设置,可以在命令行键入tlntadmn c ...
- 图解LoadAverage(负载)
图解LoadAverage(负载) http://www.habadog.com/2015/02/27/what-is-load-average/ 一.什么是Load Average 系统负载(S ...
- Liferay 6.2 改造系列之十六:关闭OpenID模式的单点登录
在/portal-master/portal-impl/src/portal.properties文件中,有如下配置: # # Set this to true to enable OpenId au ...
- mysql LAST_INSERT_ID 使用与注意事项
在使用MySQL时,若表中含自增字段(auto_increment类型),则向表中insert一条记录后,可以调用last_insert_id()来获得最近insert的那行记录的自增字段值 $mdb ...
- 如何创建一个Android项目
第一步: File -->New ---->Android Application Project 点击创建 第二步:接下来是几个下拉选择框. Minimum Required SDK 是 ...
- 我的c++学习(2)比较两个数字大小
#include "stdafx.h" #include<iostream> using namespace std; int max(int i, int j){ / ...