Streaming简介

link:http://www.cnblogs.com/luchen927/archive/2012/01/16/2323448.html

Streaming框架允许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植。因此可以说对于hadoop的扩展性意义重大,今天简单说一下。

Streaming的原理是用Java实现一个包装用户程序的MapReduce程序,该程序负责调用MapReduce Java接口获取key/value对输入,创建一个新的进程启动包装的用户程序,将数据通过管道传递给包装的用户程序处理,然后调用MapReduce Java接口将用户程序的输出切分成key/value对输出。

Streaming优点

1 开发效率高,便于移植

只要按照标准输入输出格式进行编程,就可以满足hadoop要求。因此单机程序稍加改动就可以在集群上进行使用。 同样便于测试

只要按照 cat input | mapper | sort | reducer > output 进行单机测试即可。

如果单机测试通过,大多数情况是可以在集群上成功运行的,只要控制好内存就好了。

2 提高程序效率

有些程序对内存要求较高,如果用java控制内存毕竟不如C/C++。

Streaming不足

1 Hadoop Streaming默认只能处理文本数据,无法直接对二进制数据进行处理

2 Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出

具体参数介绍

-input    <path>

输入数据路径

-output   <path>

输出数据路径

-mapper  <cmd|JavaClassName>

mapper可执行程序或Java类

-reducer  <cmd|JavaClassName>

reducer可执行程序或Java类

-file            <file>        Optional

分发本地文件

-cacheFile       <file>        Optional

分发HDFS文件

-cacheArchive   <file>         Optional

分发HDFS压缩文件

-numReduceTasks  <num>     Optional

reduce任务个数

-jobconf | -D NAME=VALUE    Optional

作业配置参数

-combiner <JavaClassName>    Optional

Combiner Java类

-partitioner <JavaClassName>   Optional

Partitioner Java类

-inputformat <JavaClassName>  Optional

InputFormat Java类

-outputformat <JavaClassName> Optional

OutputFormat Java类

-inputreader <spec>            Optional

InputReader配置

-cmdenv   <n>=<v>           Optional

传给mapper和reducer的环境变量

-mapdebug <path>             Optional

mapper失败时运行的debug程序

-reducedebug <path>           Optional

reducer失败时运行的debug程序

-verbose                      Optional

详细输出模式

下面是对各个参数的详细说明:

l -input <path>:指定作业输入,path可以是文件或者目录,可以使用*通配符,-input选项可以使用多次指定多个文件或目录作为输入。

l -output <path>:指定作业输出目录,path必须不存在,而且执行作业的用户必须有创建该目录的权限,-output只能使用一次。

l -mapper:指定mapper可执行程序或Java类,必须指定且唯一。

l -reducer:指定reducer可执行程序或Java类,必须指定且唯一。

l -file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件。

l -numReduceTasks:指定reducer的个数,如果设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接作为整个作业的输出。

-jobconf | -D NAME=VALUE:指定作业参数,NAME是参数名,VALUE是参数值,可以指定的参数参考hadoop-default.xml。特别建议用-jobconf mapred.job.name='My Job Name'设置作业名,使用-jobconf mapred.job.priority=VERY_HIGH | HIGH | NORMAL | LOW | VERY_LOW设置作业优先级,使用-jobconf mapred.job.map.capacity=M设置同时最多运行M个map任务,使用-jobconf mapred.job.reduce.capacity=N设置同时最多运行N个reduce任务。

常见的作业配置参数如下表所示:

mapred.job.name

作业名

mapred.job.priority

作业优先级

mapred.job.map.capacity

最多同时运行map任务数

mapred.job.reduce.capacity

最多同时运行reduce任务数

hadoop.job.ugi

作业执行权限

mapred.map.tasks

map任务个数

mapred.reduce.tasks

reduce任务个数

mapred.job.groups

作业可运行的计算节点分组

mapred.task.timeout

任务没有响应(输入输出)的最大时间

mapred.compress.map.output

map的输出是否压缩

mapred.map.output.compression.codec

map的输出压缩方式

mapred.output.compress

reduce的输出是否压缩

mapred.output.compression.codec

reduce的输出压缩方式

stream.map.output.field.separator

map输出分隔符

l -combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。

l -partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitonerIntHashPartitioner

l -inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。如果不指定,默认使用TextInputFormat和TextOutputFormat。

l -cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。

l -mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。

l -verbose:指定输出详细信息,例如分发哪些文件,实际作业配置参数值等,可以用于调试。

Hadoop Streaming框架使用(一)的更多相关文章

  1. Hadoop Streaming框架学习2

    Hadoop Streaming框架学习(二) 1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop ...

  2. Hadoop Streaming框架学习(一)

    Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Had ...

  3. Hadoop Streaming框架使用(二)

    上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...

  4. Hadoop Streaming框架学习(二)

    1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop/hadoop streaming args 其 ...

  5. Hadoop Streaming详解

    一: Hadoop Streaming详解 1.Streaming的作用 Hadoop Streaming框架,最大的好处是,让任何语言编写的map, reduce程序能够在hadoop集群上运行:m ...

  6. hadoop streaming怎么设置key

    充分利用hadoop的map输出自动排序功能,能够有效提高计算效率.Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'/t’之前的部分作为key,其余内容作为valu ...

  7. hadoop streaming 文档

    Hadoop Streaming框架使用(一) Streaming简介 Streaming框架允许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植.因 ...

  8. hadoop streaming字段排序介绍

    我们在使用hadoop streaming的时候默认streaming的map和reduce的separator不指定的话,map和reduce会根据它们默认的分隔符来进行排序 map.reduce: ...

  9. 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试

    相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控 用python + hadoop streami ...

随机推荐

  1. 360极速浏览器安装.crx扩展(postman)

    用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法来跟踪网页请求的,用户可以使用一些网络的监视工具比如著名的Firebug等网页调试工具.今天给大家介绍的这款网页调试工具不仅可以 ...

  2. Android android:gravity属性介绍及效果图

    转自: http://blog.csdn.net/aminfo/article/details/7784229 Android:gravity的属性官方说明如下: public static fina ...

  3. ASP.NET Web API中使用GZIP 或 Deflate压缩

    对于减少响应包的大小和响应速度,压缩是一种简单而有效的方式. 那么如何实现对ASP.NET Web API 进行压缩呢,我将使用非常流行的库用于压缩/解压缩称为DotNetZip库.这个库可以使用Nu ...

  4. hdu 1698:Just a Hook(线段树,区间更新)

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. Fallout4 Creation Kit

    按住SHIFT是旋转视角,按住鼠标中键 E是移动物品 双击W是旋转物品 数字键2 是调整物品大小

  6. apistore接口调用demo

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 避免在ASP.NET Core中使用服务定位器模式

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:服务定位器(Service Locator)作为一种反模式,一般情况下应该避免使用,在 ...

  8. C专家编程cdecl

    理解所有分析过程的代码段 Page71(中文版) 你可以轻松地编写一个能够分析C语言的声明并把他们翻译成通俗语言的程序.事实上,为什么不?C语言声明的基本形式已经描述清楚.我们所需要的只是编写一段能够 ...

  9. VS2010下配置OpenMesh

    从www.openmesh.org下载最新版的安装包或者源代码,注意下载与自己系统匹配的版本,我下的是VS2010预编译版的,下载源码自己编译是一样的.安装好Visual Studio. 安装Open ...

  10. C# 使用 NPOI 库读写 Excel 文件

    NPOI 是开源的 POI 项目的.NET版,可以用来读写Excel,Word,PPT文件.在处理Excel文件上,NPOI 可以同时兼容 xls 和 xlsx.官网提供了一份 Examples,给出 ...