题目大概就是要,给一个由若干区间[Si,Ti]组成的序列,求最小长度的子序列,使这个子序列覆盖1到n这n个点。

  • dp[i]表示从第0个到第i个区间且使用第i个区间,覆盖1到Ti所需的最少长度
  • 对于Si=1的i区间dp值就是1了,要求的答案就是所有Ti=n的最小的dp值

转移就是,dp[i]=dp[j]+1,Si<=Tj<=Ti。不过枚举转移这样显然会T的,可以转化成RMQ来提升效率,用线段树成段更新成段查询即可,即维护1...n的覆盖所需区间的最小值,这样时间复杂度O(mlogn)。

 #include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 55555 inline int min(int a,int b){
if(a==) return b;
if(b==) return a;
if(a<b) return a;
return b;
} int tree[MAXN<<],tag[MAXN<<],N,x,y,z;
void update(int i,int j,int k){
if(x<=i && j<=y){
tree[k]=min(tree[k],z);
tag[k]=min(tag[k],z);
return;
}
if(tag[k]){
tree[k<<]=min(tree[k<<],tag[k]);
tree[k<<|]=min(tree[k<<|],tag[k]);
tag[k<<]=min(tag[k<<],tag[k]);
tag[k<<|]=min(tag[k<<|],tag[k]);
tag[k]=;
}
int mid=i+j>>;
if(x<=mid) update(i,mid,k<<);
if(y>mid) update(mid+,j,k<<|);
tree[k]=min(tree[k<<],tree[k<<|]);
}
int query(int i,int j,int k){
if(x<=i && j<=y){
return tree[k];
}
if(tag[k]){
tree[k<<]=min(tree[k<<],tag[k]);
tree[k<<|]=min(tree[k<<|],tag[k]);
tag[k<<]=min(tag[k<<],tag[k]);
tag[k<<|]=min(tag[k<<|],tag[k]);
tag[k]=;
}
int mid=i+j>>,res=;
if(x<=mid) res=min(res,query(i,mid,k<<));
if(y>mid) res=min(res,query(mid+,j,k<<|));
return res;
} int main(){
int n,m,a,b;
scanf("%d%d",&n,&m);
for(N=; N<n; N<<=);
int ans=;
for(int i=; i<m; ++i){
scanf("%d%d",&a,&b);
int res=;
if(a==) res=;
else{
x=a; y=b;
res=query(,N,);
if(res) ++res;
}
x=; y=b; z=res;
update(,N,);
if(b==n) ans=min(ans,res);
}
printf("%d\n",ans);
return ;
}

POJ1769 Minimizing maximizer(DP + 线段树)的更多相关文章

  1. POJ 1769 Minimizing maximizer (线段树优化dp)

    dp[i = 前i中sorter][j = 将min移动到j位置] = 最短的sorter序列. 对于sorteri只会更新它右边端点r的位置,因此可以把数组改成一维的,dp[r] = min(dp[ ...

  2. ZOJ 3349 Special Subsequence 简单DP + 线段树

    同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...

  3. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  4. cf834D(dp+线段树区间最值,区间更新)

    题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...

  5. Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)

    Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...

  6. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

  7. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  8. POJ 3162 Walking Race 树形DP+线段树

    给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...

  9. 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机

    这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...

随机推荐

  1. XMPP框架下微信项目总结(8)图片发送

    前言:“图片”发送和“聊天文本”都是通过模块发起的成为:“消息模块”(反正传递的都是字符串) 发送原理:     1 current客户端获取本地图片 2 xmpp发送“字符串”(为什么是字符串?1: ...

  2. zipArchive

    ZipArchive *unZip = [[ZipArchive alloc]init]; if ([unZip unzipOpenFile:savePath]) { BOOL ret = [unZi ...

  3. 【PHP用户的错误日志】

    将产生的错误保存在日志中的方法:使用error_log方法,其中,当日志类型是3的时候,下一个参数将会是日志文件的保存路径 使用示例: <?php function myerror($level ...

  4. oracle使用dbms_metadata包取得所有对象DDL语句

    当我们想要查看某个表或者是表空间的DDL的时候,可以利用dbms_metadata.get_ddl这个包来查看. dbms_metadata包中的get_ddl函数详细参数 GET_DDL函数返回创建 ...

  5. struts拦截器实现原理

    图1: 上1来源于Struts2官方站点,是Struts 2 的整体结构. 一个请求在Struts2框架中的处理大概分为以下几个步骤 1 客户端初始化一个指向Servlet容器(例如Tomcat)的请 ...

  6. 一致性hash算法简介与代码实现

    一.简介: 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance) 2.单调性(Monotonicity) 3.分散性(Spread) 4.负 ...

  7. 顺序表C语言版

    #include <stdio.h> /* * 顺序表最多输入N个数 */ #define N 10 #define OK 1 #define ERROR -1 struct sequeu ...

  8. 从官方ROM中提取原生APK

    背景:由于自己手机总出现android.process.acore问题,最后发现是被自己精简掉了日历相关应用,故寻找提取原生apk. 注:解决方案主要是在机锋论坛上看到的. 环境要求:需要电脑安卓ja ...

  9. 背景虚化 Google Camera App Nokia Refocus HTC One M8 的 Duo景深相机

    背景虚化是单反中一种比较常见的拍照形式,参看 http://www.techbang.com/posts/%2017842 https://refocus.nokia.com/

  10. windowsapi

    内核相关的在:kernel.dll,提供内存管理.进程管理.进程调度.线程管理等等用户相关的在:user32.dll,提供执行用户界面相关的接口界面相关的在:gdi32.dll,提供画图相关的接口