题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内。

解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆时针,dir=-1为顺时针,然后如果后面有两个相邻的边叉积后得出旋转方向为nowdir,如果dir*nowdir < 0,说明方向逆转了,即出现了凹点,说明不是凸多边形。

然后判圆是否在多边形内: 先判圆心是否在多边形内,用环顾法,然后如果在之内,则依次判断圆心与每条凸包边的距离与半径的距离,如果所有的dis都大于等于R,说明圆在凸包内。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define pi acos(-1.0)
#define eps 1e-8
using namespace std; struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
if(dcmp(Dot(v1, v3)) > ) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
//点是否在多边形内部
int CheckPointInPolygon(Point A,Point* p,int n){
double TotalAngle = 0.0;
for(int i=;i<n;i++) {
if(dcmp(Cross(p[i]-A,p[(i+)%n]-A)) >= ) TotalAngle += Angle(p[i]-A,p[(i+)%n]-A);
else TotalAngle -= Angle(p[i]-A,p[(i+)%n]-A);
}
if(dcmp(TotalAngle) == ) return ; //外部
else if(dcmp(fabs(TotalAngle)-*pi) == ) return ; //完全内部
else if(dcmp(fabs(TotalAngle)-pi) == ) return ; //边界上
else return ; //多边形顶点
}
//判断未知时针方向的多边形是否是凸包
bool CheckConvexHull(Point* p,int n){
int dir = ; //旋转方向
for(int i=;i<n;i++) {
int nowdir = dcmp(Cross(p[(i+)%n]-p[i],p[(i+)%n]-p[i]));
if(!dir) dir = nowdir;
if(dir*nowdir < ) return false; //非凸包
}
return true;
} Point p[]; int main()
{
int n,i,j;
Circle Peg;
while(scanf("%d",&n)!=EOF && n >= )
{
scanf("%lf",&Peg.r); Peg.c.input();
for(i=;i<n;i++) p[i].input();
if(!CheckConvexHull(p,n)) { puts("HOLE IS ILL-FORMED"); continue; }
if(CheckPointInPolygon(Peg.c,p,n))
{
for(i=;i<n;i++)
{
double dis = DistanceToSeg(Peg.c,p[i],p[(i+)%n]);
if(dcmp(dis-Peg.r) < ) break;
}
if(i == n) { puts("PEG WILL FIT"); continue; }
}
puts("PEG WILL NOT FIT");
}
return ;
}

参考文章: http://blog.csdn.net/lyy289065406/article/details/6648606

射线法:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define eps 1e-8
using namespace std;
struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); } bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == && dcmp(Dot(A-P,B-P)) <= ;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
if(dcmp(Dot(v1, v3)) > ) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
//判断未知时针方向的多边形是否是凸包
bool CheckConvexHull(Point* p,int n){
int dir = ; //旋转方向
for(int i=;i<n;i++) {
int nowdir = dcmp(Cross(p[(i+)%n]-p[i],p[(i+)%n]-p[i]));
if(!dir) dir = nowdir;
if(dir*nowdir < ) return false; //非凸包
}
return true;
}
int Ray_PointInPolygon(Point A,Point* p,int n) {
int wn = ;
for(int i=;i<n;i++) {
//if(OnSegment(A,p[i],p[(i+1)%n])) return -1; //边界
int k = dcmp(Cross(p[(i+)%n]-p[i], A-p[i]));
int d1 = dcmp(p[i].y-A.y);
int d2 = dcmp(p[(i+)%n].y-A.y);
if(k > && d1 <= && d2 > ) wn++;
if(k < && d2 <= && d1 > ) wn--;
}
if(wn) return ; //内部
return ; //外部
} Point p[]; int main()
{
int n,i,j;
Circle Peg;
while(scanf("%d",&n)!=EOF && n >= )
{
scanf("%lf",&Peg.r); Peg.c.input();
for(i=;i<n;i++) p[i].input();
if(!CheckConvexHull(p,n)) { puts("HOLE IS ILL-FORMED"); continue; }
if(Ray_PointInPolygon(Peg.c,p,n))
{
for(i=;i<n;i++)
{
double dis = DistanceToSeg(Peg.c,p[i],p[(i+)%n]);
if(dcmp(dis-Peg.r) < ) break;
}
if(i == n) { puts("PEG WILL FIT"); continue; }
}
puts("PEG WILL NOT FIT");
}
return ;
}

POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  2. POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  4. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  5. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  6. POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...

  7. 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole

    题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...

  8. POJ 1584 A Round Peg in a Ground Hole

    先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...

  9. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. Web安全之CSRF攻击

    CSRF是什么? CSRF(Cross Site Request Forgery),中文是跨站点请求伪造.CSRF攻击者在用户已经登录目标网站之后,诱使用户访问一个攻击页面,利用目标网站对用户的信任, ...

  2. 1分钟实现Autodesk Vault登录对话框

      .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courie ...

  3. 在Json解析过程中,我为什么用object1.optInt ,和 object1.optString

    今天在做Json解析的时候,出现了一段代码没执行的问题,于是找了一下原因: 1.原代码是:   发现 红色的一句 没有执行,查看控制台发现了异常 2.修复bug ,正确的代码为        3.总结 ...

  4. java 实现 LINQ 的一些框架记录一下

    jOOQ: http://www.jooq.org JINQ: http://www.jinq.org JaQue: http://github.com/TrigerSoft/jaque JaQu:  ...

  5. [原] Android 自定义View步骤

    例子如下:Android 自定义View 密码框 例子 1 良好的自定义View 易用,标准,开放. 一个设计良好的自定义view和其他设计良好的类很像.封装了某个具有易用性接口的功能组合,这些功能能 ...

  6. Virtualbox虚拟机安装CentOS6.5图文详细教程

    什么是Virtualbox? VirtualBox 是一款开源虚拟机软件(注:跟vmware差不多).VirtualBox 是由德国 Innotek 公司开发,由Sun Microsystems公司出 ...

  7. CentOS 6.3下MySQL 5.6源码安装

    Linux操作系统:CentOS 6.3 1:下载:当前mysql版本到了5.6.10 下载地址:http://dev.mysql.com/downloads/mysql/5.6.html#downl ...

  8. C#解决验证码问题

    string ss = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";            R ...

  9. C#语句1:选择语句二(switch break)

    (二)switch case switch case 必须与 break 一同使用.break是跳转语句.与switch case连用的时候是跳出最近的{}. 注: ●若case后面接收的是字符串类型 ...

  10. SQLServer中ISNULL、NULLIF和CONVERT函数

    create view sss as(select ISNULL(operate_time, CONVERT(VARCHAR(20),create_time,120)) time from s_pro ...