[SLAM]2D激光线特征提取
Nguyen, V., et al. (2007)."A comparison of line extraction algorithms using 2D range data for indoor mobile robotics." Autonomous Robots 23(2): 97-111.
论文提出了6中从二维激光扫描数据中提取线段的方法
1.分割合并算法
有的时候十分烦那些斜着的连线,实际不是想要的。
2.回归方法
先聚类,再回归
3.累积、区域生长算法
感觉对噪声数据真的没办法了,窝成一团的点,提取的线十分破碎而且乱...
function [ lineSegCoord ] = extractLineSegment( model,normals,intervalPts,normalDelta,dThreshold)
%EXTRACTLINESEGMENT Summary of this function goes here
% Detailed explanation goes here
if (nargin == ) || isempty(model)
lineSegCoord = [];
return;
end;
ns = createns(model','NSMethod','kdtree')
pts=size(model,);
if (nargin == )
normalDelta=0.9;
dThreshold=0.5;
end
if isempty(normals)
normals=zeros(,pts);
for nor=:pts
[idx, dist] = knnsearch(ns,model(:,nor)','k',2);
data=model(:,idx);
men=mean(data,);
rep= repmat(men,,size(data,));
data = data - rep;
% Compute the MxM covariance matrix A
A = cov(data');
% Compute the eigenvector of A
[V, LAMBDA] = eig(A);
% Find the eigenvector corresponding to the minimum eigenvalue in A
% This should always be the first column, but check just in case
[~,idx] = min(diag(LAMBDA));
% Normalize
V = V(:,idx)./norm(V(:,idx));
%定向
normals(:,nor)=V;
end
end lineSeg=[;];
newLineIdx=;
for j=:pts-
current=model(:,j);
pre=model(:,j-);
next=model(:,j+);
curNormal=normals(:,j);
preNormal=normals(:,j-);
nextNormal=normals(:,j+);
[d,vPt]=Dist2D_Point_to_Line(current,pre,next);
dis=norm(current-pre);
delta=dot(curNormal,preNormal)/(norm(curNormal)*norm(preNormal));
if(delta>normalDelta&& d<dThreshold) %注意两个阈值
lineSeg(,newLineIdx)=lineSeg(,newLineIdx)+;%点数
else
newLineIdx=newLineIdx+;
lineSeg=[lineSeg [; ]];
lineSeg(,newLineIdx)=lineSeg(,newLineIdx-)+ lineSeg(,newLineIdx-);%起始点索引
end
end
indexLs=;
lineSegCoord=[];
for k=:size(lineSeg,)
from=lineSeg(,k);
to=from+lineSeg(,k)-;
if(lineSeg(,k) > intervalPts)
try
pts= model(:,(from:to));
coef1 = polyfit(pts(,:),pts(,:),);
k2 = coef1();
b2 = coef1();
coef2 = robustfit(pts(,:),pts(,:),'welsch');
k2 = coef2();
b2 = coef2();
ML = true;
catch
ML = false;
end;
[D,fPb]= Dist2D_Point_to_Line(model(:,from),[ b2]',[1 k2+b2]');
[D,tPb]= Dist2D_Point_to_Line(model(:,to),[ b2]',[1 k2+b2]');
interval=abs(model(,from) -model(,to));
if(interval>0.05)
x = linspace(fPb() ,tPb(), );
if ML
y_ML = k2*x +b2;
lineSegCoord=[lineSegCoord [fPb() fPb() tPb() tPb()]'];
plot(x, y_ML, 'b-', 'LineWidth', );
end;
else
y = linspace(fPb() ,tPb(), );
if ML
x_ML =(y-b2)/k2;
lineSegCoord=[lineSegCoord [fPb() fPb() tPb() tPb()]'];
plot(x_ML, y, 'b-', 'LineWidth', );
end;
end;
% try
% tmpPts= model(:,(from:to));
% Theta_ML = estimate_line_ML(tmpPts,[], sigma, );
% ML = true;
% catch
% % probably the optimization toolbox is not installed
% ML = false;
% end;
% interval=abs(model(,from) -model(,to));
% if(interval>)
% x = linspace(model(,from) ,model(,to), );
% if ML
% y_ML = -Theta_ML()/Theta_ML()*x - Theta_ML()/Theta_ML();
% lineSegCoord=[lineSegCoord [x() y_ML() x() y_ML()]'];
% plot(x, y_ML, 'b-', 'LineWidth', );
% end;
% else
% y = linspace(model(,from) ,model(,to), );
% if ML
% x_ML = -Theta_ML()/Theta_ML()*y - Theta_ML()/Theta_ML();
% lineSegCoord=[lineSegCoord [x_ML() y() x_ML() y()]'];
% plot(x_ML, y, 'b-', 'LineWidth', );
% end;
% end;
end
end
end
4.Ransac方法
5.霍夫变换方法
6.EM方法
[SLAM]2D激光线特征提取的更多相关文章
- 2D激光SLAM算法比较+cartographer
Hector slam: Hector slam利用高斯牛顿方法解决scan-matching问题,对传感器要求较高. 缺点:需要雷达(LRS)的更新频率较高,测量噪声小.所以在制图过程中,需要rob ...
- [SLAM]2D激光扫描匹配方法
1.Beam Model 2.Likehood field for k=1:size(zt,1) if zt(k,2)>0 d = -grid_dim/2; else d = grid_dim/ ...
- 主流视觉SLAM、激光SLAM总结
SLAM预备知识 SLAM for Dummies 全文总结 视觉里程计 卡尔曼滤波推导 MonoSLAM MonoSLAM:Real-Time Single Camera SLAM全文总结 PTAM ...
- 我用MATLAB撸了一个2D LiDAR SLAM
0 引言 刚刚入门学了近一个月的SLAM,但对理论推导一知半解,因此在matlab上捣鼓了个简单的2D LiDAR SLAM的demo来体会体会SLAM的完整流程. (1)数据来源:德意志博物馆Deu ...
- 激光SLAM与视觉SLAM的特点
激光SLAM与视觉SLAM的特点 目前,SLAM技术被广泛运用于机器人.无人机.无人驾驶.AR.VR等领域,依靠传感器可实现机器的自主定位.建图.路径规划等功能.由于传感器不同,SLAM的实现方式也有 ...
- 3D视觉 之 线激光3D相机
1 3D 视觉 常见的三维视觉技术,包含双目.ToF.激光三角.结构光等,如下图: 1)毫米级 双目.ToF.结构光(散斑)的精度为 mm 级,多见于消费领域,如:导航避障,VR/AR,刷脸 ...
- 深度学习结合SLAM研究总结
博客转载自:https://blog.csdn.net/u010821666/article/details/78793225 原文标题:深度学习结合SLAM的研究思路/成果整理之 1. 深度学习跟S ...
- 对比几种在ROS中常用的几种SLAM算法
在此因为要总结写一个文档,所以查阅资料,将总结的内容记录下来,欢迎大家指正! 文章将介绍使用的基于机器人操作系统(ROS)框架工作的SLAM算法. 在ROS中提供的五种基于2D激光的SLAM算法分别是 ...
- 激光三角法点云重建分享——halcon 方法
如今视觉应用方面单纯依靠2D图像解决问题存在很多问题.稳定性差.定位不准确.还有配合机器人抓取方面只能抓高度一致的物品.其实在Halcon算法库有非常强大的三维算法.包括点云重建.激光三角法(2D相机 ...
随机推荐
- Here's what C++ is
Yes this article describes what c++ exactlyis http://www.skywind.me/blog/archives/1398#comment-3671 ...
- NOIp 2012 #1 Vigenère 密码 Label:模拟
题目描述 16 世纪法国外交家 Blaise de Vigenère 设计了一种多表密码加密算法――Vigenère 密 码.Vigenère 密码的加密解密算法简单易用,且破译难度比较高,曾在美国南 ...
- 【BZOJ】1998: [Hnoi2010]Fsk物品调度
http://www.lydsy.com/JudgeOnline/problem.php?id=1998 题意: 给你6个整数$n,s,q,p,m,d$. 有$n$个位置和$n-1$个盒子,位置编号从 ...
- 《你必须知道的.NET》书中对OCP(开放封闭)原则的阐述
开放封闭原则(OCP,Open Closed Principle)是面向对象原则的核心.由于软件设计本身所追求的墓边就是封装变化,降低耦合,而开放封闭原则就是对这一目标的直接体现.(你必须知道的.NE ...
- 如何更改tableView cell的accessoryView位置,如何让首尾的Separator不显示
一,如何更改tableView cell的accessoryView位置 1.实则是更改不了的,因此右边总会有一个小边距. 2.可以向 cell 的 contentView 中添加按钮放在右边,与 c ...
- 隐藏Jquery dialog 按钮
$(".ui-dialog-buttonpane button").hide(); //隐藏dialog中所有button $(".ui-dialog-buttonpan ...
- ArcGIS 设置地图显示范围大小(全屏显示)
Arcmap的FullExtent默认是地图加载的时候的extent.其实这个fullExtent是可以设置的. 打开ArcMap,选择左边图例的Layers ,右键点击,选择“Properties. ...
- iOS中JSONModel的使用
iOS中JSONModel的使用 流弊的JSON数据模型框架 https://github.com/jsonmodel/jsonmodel 版本 1.3.0 如果你喜欢JSONModel,并且使用 ...
- Hadoop.2.x_时间服务器搭建(CentOs6.6)
一.检查linux系统NTP是否被安装 [liuwl@hadoop09-linux-01 ~]$ [liuwl@hadoop09-linux-01 ~]$ rpm -qa | grep ntp ntp ...
- 从jQuery中学习来的另一种继承方式(技巧)
遵从Js的原型链规则,利用js灵活的特性灵活地改造原型,可以实现各种创意地继承方式,昨天研究了jQuery,对作者实现继承的方式感到佩服,他对js原型和原型链的理解比较透彻,运用自如.这里给出jQue ...