地址:http://poj.org/problem?id=1329

题目:

Circle Through Three Points
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3970   Accepted: 1667

Description

Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line. 
The solution is to be printed as an equation of the form

	(x - h)^2 + (y - k)^2 = r^2				(1)

and an equation of the form

	x^2 + y^2 + cx + dy - e = 0				(2)

Input

Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the equations. Print a single blank line after each equation pair.

Sample Input

7.0 -5.0 -1.0 1.0 0.0 -6.0
1.0 7.0 8.0 6.0 7.0 -2.0

Sample Output

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0 (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

Source

 
思路:
  维基有公式。
 #include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-; /****************常用函数***************/
//判断ta与tb的大小关系
int sgn( double ta, double tb)
{
if(fabs(ta-tb)<eps)return ;
if(ta<tb) return -;
return ;
} //点
class Point
{
public: double x, y; Point(){}
Point( double tx, double ty){ x = tx, y = ty;} bool operator < (const Point &_se) const
{
return x<_se.x || (x==_se.x && y<_se.y);
}
friend Point operator + (const Point &_st,const Point &_se)
{
return Point(_st.x + _se.x, _st.y + _se.y);
}
friend Point operator - (const Point &_st,const Point &_se)
{
return Point(_st.x - _se.x, _st.y - _se.y);
}
//点位置相同(double类型)
bool operator == (const Point &_off)const
{
return sgn(x, _off.x) == && sgn(y, _off.y) == ;
} }; /****************常用函数***************/
//点乘
double dot(const Point &po,const Point &ps,const Point &pe)
{
return (ps.x - po.x) * (pe.x - po.x) + (ps.y - po.y) * (pe.y - po.y);
}
//叉乘
double xmult(const Point &po,const Point &ps,const Point &pe)
{
return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
}
//两点间距离的平方
double getdis2(const Point &st,const Point &se)
{
return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
}
//两点间距离
double getdis(const Point &st,const Point &se)
{
return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
} //两点表示的向量
class Line
{
public: Point s, e;//两点表示,起点[s],终点[e]
double a, b, c;//一般式,ax+by+c=0
double angle;//向量的角度,[-pi,pi] Line(){}
Line( Point ts, Point te):s(ts),e(te){}//get_angle();}
Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){} //排序用
bool operator < (const Line &ta)const
{
return angle<ta.angle;
}
//向量与向量的叉乘
friend double operator / ( const Line &_st, const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
}
//向量间的点乘
friend double operator *( const Line &_st, const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
}
//从两点表示转换为一般表示
//a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
bool pton()
{
a = e.y - s.y;
b = s.x - e.x;
c = e.x * s.y - e.y * s.x;
return true;
}
//半平面交用
//点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
friend bool operator < (const Point &_Off, const Line &_Ori)
{
return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
< (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
}
//求直线或向量的角度
double get_angle( bool isVector = true)
{
angle = atan2( e.y - s.y, e.x - s.x);
if(!isVector && angle < )
angle += PI;
return angle;
} //点在线段或直线上 1:点在直线上 2点在s,e所在矩形内
bool has(const Point &_Off, bool isSegment = false) const
{
bool ff = sgn( xmult( s, e, _Off), ) == ;
if( !isSegment) return ff;
return ff
&& sgn(_Off.x - min(s.x, e.x), ) >= && sgn(_Off.x - max(s.x, e.x), ) <=
&& sgn(_Off.y - min(s.y, e.y), ) >= && sgn(_Off.y - max(s.y, e.y), ) <= ;
} //点到直线/线段的距离
double dis(const Point &_Off, bool isSegment = false)
{
///化为一般式
pton();
//到直线垂足的距离
double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
//如果是线段判断垂足
if(isSegment)
{
double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
double xb = max(s.x, e.x);
double yb = max(s.y, e.y);
double xs = s.x + e.x - xb;
double ys = s.y + e.y - yb;
if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
td = min( getdis(_Off,s), getdis(_Off,e));
}
return fabs(td);
} //关于直线对称的点
Point mirror(const Point &_Off)
{
///注意先转为一般式
Point ret;
double d = a * a + b * b;
ret.x = (b * b * _Off.x - a * a * _Off.x - * a * b * _Off.y - * a * c) / d;
ret.y = (a * a * _Off.y - b * b * _Off.y - * a * b * _Off.x - * b * c) / d;
return ret;
}
//计算两点的中垂线
static Line ppline(const Point &_a,const Point &_b)
{
Line ret;
ret.s.x = (_a.x + _b.x) / ;
ret.s.y = (_a.y + _b.y) / ;
//一般式
ret.a = _b.x - _a.x;
ret.b = _b.y - _a.y;
ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
//两点式
if(fabs(ret.a) > eps)
{
ret.e.y = 0.0;
ret.e.x = - ret.c / ret.a;
if(ret.e == ret. s)
{
ret.e.y = 1e10;
ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
}
}
else
{
ret.e.x = 0.0;
ret.e.y = - ret.c / ret.b;
if(ret.e == ret. s)
{
ret.e.x = 1e10;
ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
}
}
return ret;
} //------------直线和直线(向量)-------------
//向量向左边平移t的距离
Line& moveLine( double t)
{
Point of;
of = Point( -( e.y - s.y), e.x - s.x);
double dis = sqrt( of.x * of.x + of.y * of.y);
of.x= of.x * t / dis, of.y = of.y * t / dis;
s = s + of, e = e + of;
return *this;
}
//直线重合
static bool equal(const Line &_st,const Line &_se)
{
return _st.has( _se.e) && _se.has( _st.s);
}
//直线平行
static bool parallel(const Line &_st,const Line &_se)
{
return sgn( _st / _se, ) == ;
}
//两直线(线段)交点
//返回-1代表平行,0代表重合,1代表相交
static bool crossLPt(const Line &_st,const Line &_se, Point &ret)
{
if(parallel(_st,_se))
{
if(Line::equal(_st,_se)) return ;
return -;
}
ret = _st.s;
double t = ( Line(_st.s,_se.s) / _se) / ( _st / _se);
ret.x += (_st.e.x - _st.s.x) * t;
ret.y += (_st.e.y - _st.s.y) * t;
return ;
}
//------------线段和直线(向量)----------
//直线和线段相交
//参数:直线[_st],线段[_se]
friend bool crossSL( Line &_st, Line &_se)
{
return sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.e), ) >= ;
} //判断线段是否相交(注意添加eps)
static bool isCrossSS( const Line &_st, const Line &_se)
{
//1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
//2.跨立试验(等于0时端点重合)
return
max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
sgn( xmult( _se.s, _st.s, _se.e) * xmult( _se.s, _se.e, _st.s), ) >= &&
sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.s), ) >= ;
}
}; //寻找凸包的graham 扫描法所需的排序函数
Point gsort;
bool gcmp( const Point &ta, const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
{
double tmp = xmult( gsort, ta, tb);
if( fabs( tmp) < eps)
return getdis( gsort, ta) < getdis( gsort, tb);
else if( tmp > )
return ;
return ;
} class triangle
{
public:
Point a, b, c;//顶点
triangle(){}
triangle(Point a, Point b, Point c): a(a), b(b), c(c){} //计算三角形面积
double area()
{
return fabs( xmult(a, b, c)) / 2.0;
} //计算三角形外心
//返回:外接圆圆心
Point circumcenter()
{
double pa = a.x * a.x + a.y * a.y;
double pb = b.x * b.x + b.y * b.y;
double pc = c.x * c.x + c.y * c.y;
double ta = pa * ( b.y - c.y) - pb * ( a.y - c.y) + pc * ( a.y - b.y);
double tb = -pa * ( b.x - c.x) + pb * ( a.x - c.x) - pc * ( a.x - b.x);
double tc = a.x * ( b.y - c.y) - b.x * ( a.y - c.y) + c.x * ( a.y - b.y);
return Point( ta / 2.0 / tc, tb / 2.0 / tc);
} //计算三角形内心
//返回:内接圆圆心
Point incenter()
{
Line u, v;
double m, n;
u.s = a;
m = atan2(b.y - a.y, b.x - a.x);
n = atan2(c.y - a.y, c.x - a.x);
u.e.x = u.s.x + cos((m + n) / );
u.e.y = u.s.y + sin((m + n) / );
v.s = b;
m = atan2(a.y - b.y, a.x - b.x);
n = atan2(c.y - b.y, c.x - b.x);
v.e.x = v.s.x + cos((m + n) / );
v.e.y = v.s.y + sin((m + n) / );
Point ret;
Line::crossLPt(u,v,ret);
return ret;
} //计算三角形垂心
//返回:高的交点
Point perpencenter()
{
Line u,v;
u.s = c;
u.e.x = u.s.x - a.y + b.y;
u.e.y = u.s.y + a.x - b.x;
v.s = b;
v.e.x = v.s.x - a.y + c.y;
v.e.y = v.s.y + a.x - c.x;
Point ret;
Line::crossLPt(u,v,ret);
return ret;
} //计算三角形重心
//返回:重心
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
Point barycenter()
{
Line u,v;
u.s.x = (a.x + b.x) / ;
u.s.y = (a.y + b.y) / ;
u.e = c;
v.s.x = (a.x + c.x) / ;
v.s.y = (a.y + c.y) / ;
v.e = b;
Point ret;
Line::crossLPt(u,v,ret);
return ret;
} //计算三角形费马点
//返回:到三角形三顶点距离之和最小的点
Point fermentPoint()
{
Point u, v;
double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
int i, j, k;
u.x = (a.x + b.x + c.x) / ;
u.y = (a.y + b.y + c.y) / ;
while (step > eps)
{
for (k = ; k < ; step /= , k ++)
{
for (i = -; i <= ; i ++)
{
for (j =- ; j <= ; j ++)
{
v.x = u.x + step * i;
v.y = u.y + step * j;
if (getdis(u,a) + getdis(u,b) + getdis(u,c) > getdis(v,a) + getdis(v,b) + getdis(v,c))
u = v;
}
}
}
}
return u;
}
}; triangle tr; char cgn(double x)
{
return x>?'+':'-';
}
int main(void)
{ while(~scanf("%lf%lf%lf%lf%lf%lf",&tr.a.x,&tr.a.y,&tr.b.x,&tr.b.y,&tr.c.x,&tr.c.y))
{
Point pp = tr.circumcenter();
double r = getdis( tr.a, pp),d = pp.x*pp.x+pp.y*pp.y-r*r;
pp.x = -pp.x, pp.y = -pp.y;
printf("(x %c %.3f)^2 + (y %c %.3f)^2 = %.3f^2\n",cgn(pp.x),fabs(pp.x),cgn(pp.y), fabs(pp.y),r);
printf("x^2 + y^2 %c %.3fx %c %.3fy %c %.3f = 0\n\n", cgn(pp.x),fabs(pp.x*),cgn(pp.y),fabs(pp.y*),cgn(d), fabs(d)); }
return ;
}

poj1329 Circle Through Three Points的更多相关文章

  1. POJ - 1329 Circle Through Three Points 求圆

    Circle Through Three Points Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4112   Acce ...

  2. poj 1329 Circle Through Three Points(求圆心+输出)

    题目链接:http://poj.org/problem?id=1329 输出很蛋疼,要考虑系数为0,输出也不同 #include<cstdio> #include<cstring&g ...

  3. ●POJ 1329 Circle Through Three Points

    题链: http://poj.org/problem?id=1329 题解: 计算几何,求过不共线的三点的圆 就是用向量暴力算出来的东西... (设出外心M的坐标,由于$|\vec{MA}|=|\ve ...

  4. POJ 1329 Circle Through Three Points(三角形外接圆)

    题目链接:http://poj.org/problem?id=1329 #include<cstdio> #include<cmath> #include<algorit ...

  5. POJ 1329 Circle Through Three Points(三角形外心)

    题目链接 抄的外心模版.然后,输出认真一点.1Y. #include <cstdio> #include <cstring> #include <string> # ...

  6. POJ1329题

    Circle Through Three Points Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Jav ...

  7. Circle Problem From 3Blue1Brown (分圆问题)

    Background\text{Background}Background Last night, lots of students from primary school came to our c ...

  8. MapFile生成WMS

    MAP  NAME "HBWMS"  STATUS ON  SIZE 800 600  EXTENT 107.795 28.559 116.977 33.627  UNITS ME ...

  9. 墓地雕塑-LA3708

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=20& ...

随机推荐

  1. 测试用例和BUG描述规范

    欢迎关注我的公众号,了解更多的测试知识:[软件测试经验与教训] 一一BUG描述基础知识 Bug标题中需包含Bug的具体位置并以[]标注 举例:[模块-子模块-页面]XXXXXXXXXXXX Bug标题 ...

  2. 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)

    在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...

  3. 如何使用css影藏滚动条

    1.单纯的一句代码: div ::-webkit-scrollbar {width: 0px;}//或者display:none 但是这代码最大的弊端就是只能在webkit内核的浏览器上进行显示,无法 ...

  4. JS 添加js节点

    function AddScriptNode(src) { var N = document.createElement("script"); N.setAttribute(&qu ...

  5. Android英文文档翻译系列(1)——AlarmManager

      原文:个人翻译,水平有限,欢迎看官指正.                                                              public class Ala ...

  6. Servlet 工程 web.xml 中的 servlet 和 servlet-mapping 标签 《转载》

    摘录某个工程的 web.xml 文件片段: 访问顺序为1—>2—>3—>4,其中2和3的值必须相同. url-pattern 标签中的值是要在浏览器地址栏中输入的 url,可以自己命 ...

  7. 【Android】保存Bitmap到SD卡

    1.打开读写SD卡的权限 需要在AndroidManifest.xml加入如下代码: <uses-permission android:name="android.permission ...

  8. js调试模式怎么看变量是在哪里定义的?

    1. 2.

  9. 树形DP求各点能走到的最远距离

    hdu2196 Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  10. vue 缓存的keepalive页面刷新数据

    用到这个的业务场景是这样的: a页面点击新建列表按钮进入到新建的页面b,填写b页面并点击b页面确认添加按钮,把这些数据带到a页面,填充到列表(数组),可以添加多条, 点击这条的时候进入到编辑页面,确认 ...