HDU:Gauss Fibonacci(矩阵快速幂+二分)
http://acm.hdu.edu.cn/showproblem.php?pid=1588
Arithmetic progression: g(i)=k*i+b; We assume k and b are both non-nagetive integers.
Fibonacci Numbers: f(0)=0 f(1)=1 f(n)=f(n-1)+f(n-2) (n>=2)
The Gauss Fibonacci problem is described as follows: Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n The answer may be very large, so you should divide this answer by M and just output the remainder instead.
12
题目解析:
用于构造斐波那契的矩阵为
0,1
1,1
设这个矩阵为A。
sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*k+b)
<=>sum=A^b+A^(k+b)+A^(2*k+b)+A^(3*k+b)+........+A^((n-1)*k+b)
<=>sum=A^b+A^b*(A^k+A^2*k+A^3*k+.......+A^((n-1)*k))(1)
设矩阵B为A^k;
那么(1)式为
sum=A^b+A^b*(B+B^2+B^3+......+B^(n-1));
显然,这时候就可以用二分矩阵做了,括号内的就跟POJ 3233的形式一样了。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#define inf 0x3f3f3f3f
#define LL __int64//int就WA了
using namespace std;
struct ma
{
LL a[][];
} init,res,B,C;
int mod,k,b,n,K;
void Init()
{
init.a[][]=;
init.a[][]=;
init.a[][]=;
init.a[][]=;
}
ma Mult(ma x,ma y)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
tmp.a[i][j]=;
for(int z=; z<; z++)
{
tmp.a[i][j]=(tmp.a[i][j]+x.a[i][z]*y.a[z][j])%mod;
}
}
}
return tmp;
}
ma Pow(ma x,int K)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
tmp.a[i][j]=(i==j);
}
while(K!=)
{
if(K&)
tmp=Mult(tmp,x);
K>>=;
x=Mult(x,x);
}
return tmp;
}
ma Add(ma x,ma y)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
tmp.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
}
}
return tmp;
}
ma Sum(ma x,int K)
{
ma tmp,y;
if(K==)
return x;
tmp=Sum(x,K/);
if(K&)
{
y=Pow(x,K/+);
tmp=Add(Mult(y,tmp),tmp);
tmp=Add(tmp,y);
}
else
{
y=Pow(x,K/);
tmp=Add(Mult(y,tmp),tmp);
}
return tmp;
}
/*另外一种写法
matrix Sum(matrix x, int k)
{
if(k==1) return x;
if(k&1)
return Add(Sum(x,k-1),Pow(x,k)); //如果k是奇数,求x^k+sum(x,k-1)
matrix tmp;
tmp=Sum(x,k>>1);
return Add(tmp,Mult(tmp,Pow(x,k>>1)));
}
*/
int main()
{
while(scanf("%d%d%d%d",&k,&b,&n,&mod)!=EOF)
{
Init();
B=Pow(init,k);
C=Pow(init,b);
res=Sum(B,n-);
res=Mult(C,res);
res=Add(C,res);
printf("%I64d\n",res.a[][]);
}
return ;
}
HDU:Gauss Fibonacci(矩阵快速幂+二分)的更多相关文章
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU.2640 Queuing (矩阵快速幂)
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...
- HDU 5667 构造矩阵快速幂
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...
- HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)
M斐波那契数列 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
- 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分
矩阵 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submission ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
随机推荐
- brew 中的时间格式转换
char * pACNowStr = NULL; JulianType jtNow; ISHELL_GetJulianDate(pIShell, , &jtNow); pACNowStr = ...
- import 和 import {} 的区别
http://es6.ruanyifeng.com/#docs/module#export
- Nginx 链接
Nginx反向代理以及负载均衡配置:http://www.cnblogs.com/Miss-mickey/p/6734831.html
- linux安装nagios客户端
( 安装到 被监控的机器上)新增用户和组 useradd nagiosgroupadd nagcmd usermod -a -G nagcmd nagios (如果安装中报没有c编译器,就 yum i ...
- Dubbo(一) -- 初体验
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,是阿里巴巴SOA服务化治理方案的核心框架. 一.Dubbo出现的背景 随着互联网的发展,网站应用的规模不断扩大,常规的 ...
- 最简单的VS-Qt-CMake项目框架
使用qtcreator新建一个空工程,可以得到main.cpp,mainwindow.cpp,mainwindow.h和mainwindow.ui四个文件 下面主要介绍CMakeLists.txt的内 ...
- 元素设置disabled属性后便无法向后台传值
元素设置disabled属性后便无法向后台传值
- ajax返回值传给js全局变量
1. $.ajaxSetup({ async : false //设置ajax为同步方式,异步方式的话在赋值时数据还未提取出来 });var t = ""; var enginee ...
- CentOS 下使用yum 命令安装MySQL
CentOS Linux下使用yum 命令安装MySQL过程记录. 1. 查看服务器中有没有安装过MySQL 1. 查看有没有安装包: yum list mysql* #移除已经安装的mysql yu ...
- 微信开放平台全网发布时,检测失败 —— C#
主要就是三个:返回API文本消息,返回普通文本消息,发送事件消息 --会出现失败的情况 (后续补充说明:出现检测出错,不一定是代码出现了问题,也有可能是1.微信方面检测时出现服务器请求失败,2.我 ...