http://acm.hdu.edu.cn/showproblem.php?pid=1588

Problem Description
Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci". As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.
Arithmetic progression: g(i)=k*i+b; We assume k and b are both non-nagetive integers.
Fibonacci Numbers: f(0)=0 f(1)=1 f(n)=f(n-1)+f(n-2) (n>=2)
The Gauss Fibonacci problem is described as follows: Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n The answer may be very large, so you should divide this answer by M and just output the remainder instead.
 
Input
The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M Each of them will not exceed 1,000,000,000.
 
Output
For each line input, out the value described above.
 
Sample Input
2 1 4 100
2 0 4 100
 
Sample Output
21
12
 

题目解析:

用于构造斐波那契的矩阵为

0,1

1,1

设这个矩阵为A。

sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*k+b)

<=>sum=A^b+A^(k+b)+A^(2*k+b)+A^(3*k+b)+........+A^((n-1)*k+b)

<=>sum=A^b+A^b*(A^k+A^2*k+A^3*k+.......+A^((n-1)*k))(1)

设矩阵B为A^k;

那么(1)式为

sum=A^b+A^b*(B+B^2+B^3+......+B^(n-1));

显然,这时候就可以用二分矩阵做了,括号内的就跟POJ 3233的形式一样了。

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#define inf 0x3f3f3f3f
#define LL __int64//int就WA了
using namespace std;
struct ma
{
LL a[][];
} init,res,B,C;
int mod,k,b,n,K;
void Init()
{
init.a[][]=;
init.a[][]=;
init.a[][]=;
init.a[][]=;
}
ma Mult(ma x,ma y)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
tmp.a[i][j]=;
for(int z=; z<; z++)
{
tmp.a[i][j]=(tmp.a[i][j]+x.a[i][z]*y.a[z][j])%mod;
}
}
}
return tmp;
}
ma Pow(ma x,int K)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
tmp.a[i][j]=(i==j);
}
while(K!=)
{
if(K&)
tmp=Mult(tmp,x);
K>>=;
x=Mult(x,x);
}
return tmp;
}
ma Add(ma x,ma y)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
tmp.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
}
}
return tmp;
}
ma Sum(ma x,int K)
{
ma tmp,y;
if(K==)
return x;
tmp=Sum(x,K/);
if(K&)
{
y=Pow(x,K/+);
tmp=Add(Mult(y,tmp),tmp);
tmp=Add(tmp,y);
}
else
{
y=Pow(x,K/);
tmp=Add(Mult(y,tmp),tmp);
}
return tmp;
}
/*另外一种写法
matrix Sum(matrix x, int k) 

    if(k==1) return x; 
    if(k&1) 
        return Add(Sum(x,k-1),Pow(x,k));  //如果k是奇数,求x^k+sum(x,k-1)
    matrix tmp; 
    tmp=Sum(x,k>>1); 
    return Add(tmp,Mult(tmp,Pow(x,k>>1))); 
}
*/
int main()
{
while(scanf("%d%d%d%d",&k,&b,&n,&mod)!=EOF)
{
Init();
B=Pow(init,k);
C=Pow(init,b);
res=Sum(B,n-);
res=Mult(C,res);
res=Add(C,res);
printf("%I64d\n",res.a[][]);
}
return ;
}

HDU:Gauss Fibonacci(矩阵快速幂+二分)的更多相关文章

  1. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  3. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  4. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  5. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  6. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

  7. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  8. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  9. 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分

    矩阵 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submission ...

  10. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

随机推荐

  1. brew 中的时间格式转换

    char * pACNowStr = NULL; JulianType jtNow; ISHELL_GetJulianDate(pIShell, , &jtNow); pACNowStr = ...

  2. import 和 import {} 的区别

    http://es6.ruanyifeng.com/#docs/module#export

  3. Nginx 链接

    Nginx反向代理以及负载均衡配置:http://www.cnblogs.com/Miss-mickey/p/6734831.html

  4. linux安装nagios客户端

    ( 安装到 被监控的机器上)新增用户和组 useradd nagiosgroupadd nagcmd usermod -a -G nagcmd nagios (如果安装中报没有c编译器,就 yum i ...

  5. Dubbo(一) -- 初体验

    Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,是阿里巴巴SOA服务化治理方案的核心框架. 一.Dubbo出现的背景 随着互联网的发展,网站应用的规模不断扩大,常规的 ...

  6. 最简单的VS-Qt-CMake项目框架

    使用qtcreator新建一个空工程,可以得到main.cpp,mainwindow.cpp,mainwindow.h和mainwindow.ui四个文件 下面主要介绍CMakeLists.txt的内 ...

  7. 元素设置disabled属性后便无法向后台传值

    元素设置disabled属性后便无法向后台传值

  8. ajax返回值传给js全局变量

    1. $.ajaxSetup({ async : false //设置ajax为同步方式,异步方式的话在赋值时数据还未提取出来 });var t = ""; var enginee ...

  9. CentOS 下使用yum 命令安装MySQL

    CentOS Linux下使用yum 命令安装MySQL过程记录. 1. 查看服务器中有没有安装过MySQL 1. 查看有没有安装包: yum list mysql* #移除已经安装的mysql yu ...

  10. 微信开放平台全网发布时,检测失败 —— C#

    主要就是三个:返回API文本消息,返回普通文本消息,发送事件消息   --会出现失败的情况 (后续补充说明:出现检测出错,不一定是代码出现了问题,也有可能是1.微信方面检测时出现服务器请求失败,2.我 ...