转自:https://mp.weixin.qq.com/s/oZVj8lxJH6ZqL4sGCXuxMw

The Tower of Babylon(巴比伦塔)

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story:

你可能对巴比伦的传说有所耳闻,但如今诸多细节早已随风而逝。现在为了与比赛的教育目的相一致,我们将还原整个故事:

The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi,yi,zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

巴比伦人有 n 种无限供给的砖块,每个砖块 i 是三边为 xi,yi,zi 的长方体,可以以任意两边构成底,第三边为高。

They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked.

欲砌砖以筑最高楼。以上一个砖的两底边均严格小于下一个砖的两底边为原则(相等不算数)。

Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

作为程序员的你来写个bug看看用他给的砖能堆多高。

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi, yi and zi. Input is terminated by a value of zero (0) for n.

输入:多组数据。每组第一行给出种类数 n,最大30;接下来 n 行每行给出这种砖的长宽高。输入以n==0结束。

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’

输出:对于每组数据输出最高塔的高度值,格式Case要求见样例。

Sample Input

1

10 20 30

2

6 8 10

5 5 5

7

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

5

31 41 59

26 53 58

97 93 23

84 62 64

33 83 27

0

Sample Output

Case 1: maximum height = 40

Case 2: maximum height = 21

Case 3: maximum height = 28

Case 4: maximum height = 342

//这道题目主要就是学习,进一步dp的思想。

1.首先就是每个砖块都有6种利用方式,所以将其push进去,由于cmp函数中进行了两次比较,所以就push了3次。

2.vector里存的如果是struct,那么可以cmp中的参数就是结构体类型。

3.最重要的就是状态转移!

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std; struct block
{
int a;
int b;
int height;
block(int x, int y, int z){a = x; b = y; height = z;}
}; struct cmp
{
bool operator() (const block& x, const block& y)
{
return x.a * x.b > y.a * y.b;
}
}; bool yes(block x, block y)
{
return (x.a > y.a && x.b > y.b) || (x.a > y.b && x.b > y.a);
} int main()
{
int n, kase = ;
while (~scanf("%d", &n) && n)
{
vector <block> v;
for (int i = ; i < n; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
//每块都有三种用法
v.push_back(block(a,b,c));
v.push_back(block(a,c,b));
v.push_back(block(b,c,a));
}
printf("\n"); sort(v.begin(), v.end(), cmp()); int ans = v[].height;
int dp[] = {};
for (int i = ; i < v.size(); i++)
{
dp[i] = v[i].height;//这是不能省的一步
//万一前面没有一个可以匹配的,它本身高度就是本序列的一血
for (int j = ; j < i; j++)//前面扫荡一遍
if (yes(v[j], v[i]))//双边严格小于 当前i严格小于j
dp[i] = max(dp[i], dp[j] + v[i].height);
ans = max(ans, dp[i]);
} printf("Case %d: maximum height = %d\n", ++kase, ans);
}
}
/**
2
6 8 10
5 5 5
**/

//这个题简直太好了,看懂了之后感觉酣畅淋漓~

面积按从大到小排序,

dp[i]被初始化为本砖块高度;

dp[i]=max{dp[i],dp[j]+height[i]};

两层for循环,i对层,j遍历i之前的,判断i能否放到i之前的砖块上,并且累计自身的高度+上去!

最终答案每次遍历取最大即可。

//学习了!

uva The Tower of Babylon[LIS][dp]的更多相关文章

  1. UVA The Tower of Babylon

    The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many det ...

  2. UVA 437_The Tower of Babylon

    题意: 一堆石头,给定长宽高,每种石头均可以使用无数次,问这堆石头可以叠放的最高高度,要求下面的石头的长和宽分别严格大于上面石头的长和宽. 分析: 采用DAG最长路算法,由于长宽较大,不能直接用于表示 ...

  3. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  4. UVA 437 十九 The Tower of Babylon

    The Tower of Babylon Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Subm ...

  5. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  6. HOJ 1438 The Tower of Babylon(线性DP)

    The Tower of Babylon My Tags Cancel - Seperate tags with commas. Source : University of Ulm Internal ...

  7. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  8. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

  9. POJ2241——The Tower of Babylon

    The Tower of Babylon Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2207   Accepted: 1 ...

随机推荐

  1. python2.0_s12_day9之day8遗留知识(queue队列&生产者消费者模型)

    4.线程 1.语法 2.join 3.线程锁之Lock\Rlock\信号量 4.将线程变为守护进程 5.Event事件 * 6.queue队列 * 7.生产者消费者模型 4.6 queue队列 que ...

  2. 淘宝cnpm(可替代nodejs默认npm)

    淘宝 NPM 镜像 这是一个完整 npmjs.org 镜像,你可以用此代替官方版本(只读),同步频率目前为 10分钟 一次以保证尽量与官方服务同步. https://npm.taobao.org/

  3. 【RF库Collections测试】Remove From Dictionary

    Name:Remove From DictionarySource:Collections <test library>Arguments:[ dictionary | *keys ]Re ...

  4. Linux 任务计划:crontab

    (1) 什么是任务计划:也就是设置服务器在某个指定的时间执行某个指定的任务,比如执行一个命令,或执行一个脚本(2) Linux 使用 cron 服务来制定任务计划,cron 是服务名称,crond 是 ...

  5. 改变PS1的颜色

    我们能够通过配置PS1变量使提示符成为彩色.在PS1中配置字符序列颜色的格式为:       \[\e[F;Bm\]       基本上是夹在 "\e["(转义开方括号)和 &qu ...

  6. JS 保存表单默认值 为空时自动填充默认值

    var inputArray = document.getElementsByTagName("input"); var strArray = []; ; i < input ...

  7. ubuntu 14 root 账户 启用与ssh登录

    ubuntu 14.04 root用户登录 开启root帐号的方法: 为了启用root 帐号(也就是设置一个口令)使用: sudo passwd root 当你使用完毕后屏蔽root帐号使用: sud ...

  8. LeetCode——Product of Array Except Self

    Description: Given an array of n integers where n > 1, nums, return an array output such that out ...

  9. LeetCode——Implement Queue using Stacks

    Description: Implement the following operations of a queue using stacks. push(x) -- Push element x t ...

  10. Windows域的相关操作

    一.windows域账户组操作: net group /domain #查看所有组 net group GROUP-NAME /domain #查看某一个组 net group GROUP-NAME ...