取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6555    Accepted Submission(s):
3961

Problem Description
1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second
win".先取者胜输出"First win".
 
Input
输入有多组.每组第1行是2<=n<2^31. n=0退出.
 
Output
先取者负输出"Second win". 先取者胜输出"First win".
参看Sample
Output.
 
Sample Input
2
13
10000
0
 
Sample Output
Second win
Second win
First win
 
Source
 
Recommend
lcy   |   We have carefully selected several similar
problems for you:  2509 2512 1536 2510 1907 
 

为了方便,我们将n记为f[i]。

1、当i=2时,先手只能取1颗,显然必败,结论成立。

2、假设当i<=k时,结论成立。

 则当i=k+1时,f[i] = f[k]+f[k-1]。

 则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])

 对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

 如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。

 我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,对两值作差后不难得出,后者大。

 所以我们得到,x<1/2*f[k]。

 即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。
 #include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; long long int a[],len;
const long long int inf = +; int main()
{
int i,j;
long long int n;
a[] = ;
a[] = ;
for(i = ; i<=; i++)
{
a[i] = a[i-]+a[i-];
if(a[i]>=inf)
break;
}
len = i;
while(~scanf("%I64d",&n),n)
{
int flag = ;
for(i = ; i<len; i++)
{
if(a[i] == n)
{
flag = ;
break;
}
if(a[i]>n)
break;
}
if(flag)
printf("Second win\n");
else
printf("First win\n");
} return ;
}

HDU 2516 取石子游戏(斐波那契)的更多相关文章

  1. {HDU}{2516}{取石子游戏}{斐波那契博弈}

    题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...

  2. HDU 2516 取石子游戏 斐波纳契博弈

    斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...

  3. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  4. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  5. 题解报告:hdu 2516 取石子游戏(斐波那契博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...

  6. hdu 2516 取石子游戏 (斐波那契博弈)

    题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...

  7. HDU 2516 取石子游戏 (博弈论)

    取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...

  8. HDU 2516 取石子游戏 (找规律)

    题目链接 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...

  9. hdu 2516 取石子游戏 (博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

随机推荐

  1. curl使用介绍

    linux curl是通过url语法在命令行下上传或下载文件的工具软件,它支持http,https,ftp,ftps,telnet等多种协议,常被用来抓取网页和监控Web服务器状态. 一.Linux ...

  2. NOIP2016 T4 魔法阵 暴力枚举+前缀和后缀和优化

    想把最近几年的NOIP T4都先干掉,就大概差16年的,所以来做一做. 然后这题就浪费了我一整天QAQ...果然还是自己太弱了QAQ 点我看题 还是pa洛谷的... 题意:给m个物品,每个物品有一个不 ...

  3. Gym 101147J Whistle's New Car(dfs)

    https://vjudge.net/problem/Gym-101147J 题意: 有n个城市,每个城市有一个权值,表示在这个城市的加油站可以加多少油. 现在要计算每个城市i,有多少个城市j可以到达 ...

  4. mysql循环查询树状数据

    完整function )) ) CHARSET utf8 BEGIN ) ; ) ; SET str = ''; SET cid =cast(rootId as CHAR); WHILE cid is ...

  5. Android Studio 中实现高德定位并获取相应信息

    Android开发项目时常常会遇到定位这个功能,所以写了这篇博客,今天主要讲的高德地图的定位并获取相应信息. 首先导入高德的jar包 选中jar包右键点击  Add As Library, 在buil ...

  6. UVA-11491 Erasing and Winning (单调队列)

    题目大意:给一个数字(开头非0),拿掉其中的d个数字,使剩下的数字最大(前后顺序不能变). 题目分析:拿掉d个数字,还剩下n-d个数字.相当于从n个数字中按先后顺序选出n-d个数字使组成的数字最大,当 ...

  7. MySQL中视图和普通表的区别

    1.视图是数据库数据的特定子集.可以禁止所有用户访问数据库表,而要求用户只能通过视图操作数据,这种方法可以保护用户和应用程序不受某些数据库修改的影响. 2.视图是抽象的,他在使用时,从表里提取出数据, ...

  8. Word 开发资料集合

    Word 对象模型概述  https://msdn.microsoft.com/zh-cn/library/kw65a0we.aspx DSOframer微软官方API的查阅方法  http://sh ...

  9. 【MVC】ASP.NET MVC 4项目模板的结构简介

    引言     在VS2012新建一个窗体验证的MVC 4项目后,可以看到微软已经帮我们做了很多了,项目里面该有的都有了,完全可以看成一个简单网站.作为开发,能理解里面文件结构和作用,也算是半只脚踏进M ...

  10. java生成doc和jar

    生成doc帮助文档. 第一步,需要有一个java类,里面封装了各种方法 第二部,给类和方法添加注释文档 注释文档格式: /** * */ @author 作者 @version 版本 @return ...