Q: 倍增优化后, 还是有重复的元素, 怎么办

A: 假定重复的元素比较少, 不用考虑

Description

Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.

Input

Each line in the input file describes one collection of marbles to be divided. The lines contain six non-negative integers n1 , . . . , n6 , where ni is the number of marbles of value i. So, the example from above would be described by the input-line "1 0 1 2 0 0". The maximum total number of marbles will be 20000. 
The last line of the input file will be "0 0 0 0 0 0"; do not process this line.

Output

For each collection, output "Collection #k:", where k is the number of the test case, and then either "Can be divided." or "Can't be divided.". 
Output a blank line after each test case.

Sample Input

1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0

Sample Output

Collection #1:
Can't be divided. Collection #2:
Can be divided.

思路:

1. 倍增优化, 将 n 转化成 1, 2, 4 ..2^i , (n-前面的和), 然后应用 01背包问题处理

总结:

1. 判断恰好装满的条件为 dp[V] == V. 因为未初始化为 INF, 初始化为 INF 有个好处, 就是可以直接返回 dp[V], 但是更新 dp[v] 时需要加 dp[v] == inf 的判断

代码:

#include <iostream>
using namespace std;
int w[10];
int marble[10000];
int totalWeight;
int dp[120000];
int solve_dp() { int len = 0;
for(int i = 1; i <= 6; i ++) {
int sum = 0;
for(int j = 0;; j ++) {
if(sum + (1<<j) > w[i])
break;
marble[len++] = (1<<j)*i;
sum += (1<<j);
}
if(sum < w[i])
marble[len++] = (w[i]-sum)*i;
}
memset(dp, 0, totalWeight*sizeof(int));
// 01 背包
int V = totalWeight>>1;
dp[0] = 0;
for(int i = 0; i < len; i ++) {
for(int v = V; v >= marble[i]; v--) {
dp[v] = max(dp[v], dp[v-marble[i]]+marble[i]);
}
}
return (dp[V]==V);
}
int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int tc = 0;
do {
int sum = 0;
for(int i = 1; i <= 6; i ++) {
scanf("%d", &w[i]);
sum += w[i]*i;
}
if(sum == 0)
return 0;
tc ++;
if(sum & 1) { // 为奇数
printf("Collection #%d:\nCan't be divided.\n\n", tc);
continue;
}
// 重建 model, 转移成 01 背包问题
totalWeight = sum;
int ans = solve_dp();
if(!ans)
printf("Collection #%d:\nCan't be divided.\n\n", tc);
else
printf("Collection #%d:\nCan be divided.\n\n", tc);
}while(1);
return 0;
}

  

POJ 1014 Dividing(多重背包, 倍增优化)的更多相关文章

  1. Hdu 1059 Dividing & Zoj 1149 & poj 1014 Dividing(多重背包)

    多重背包模板- #include <stdio.h> #include <string.h> int a[7]; int f[100005]; int v, k; void Z ...

  2. POJ 1014 Dividing 多重背包

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63980   Accepted: 16591 Descri ...

  3. POJ 1014 Dividing (多重可行性背包)

    题意 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两份的总价值相等,其中一个物品不能切开,只能分给其中的某一方,当输入六个0是( ...

  4. Dividing 多重背包 倍增DP

    Dividing 给出n个物品的价值和数量,问是否能够平分.

  5. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  6. hdu 1059 Dividing(多重背包优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. DFS(DP)---POJ 1014(Dividing)

    原题目:http://poj.org/problem?id=1014 题目大意: 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两 ...

  8. hdu1059 dp(多重背包二进制优化)

    hdu1059 题意,现在有价值为1.2.3.4.5.6的石头若干块,块数已知,问能否将这些石头分成两堆,且两堆价值相等. 很显然,愚蠢的我一开始并想不到什么多重背包二进制优化```因为我连听都没有听 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

随机推荐

  1. vue2.0的常用功能简介

    路由跳转 当我们想要实现点击链接跳转时,可以使用$router来进行跳转 语法如下: '}}) 这里path是要跳转的路径,query里面是路径跳转时要携带的参数,以对象的形式存在 2 获取路由参数 ...

  2. GetLastError()返回值大全

    [0]-操作成功完成.[1]-功能错误.[2]-系统找不到指定的文件.[3]-系统找不到指定的路径.[4]-系统无法打开文件.[5]-拒绝访问.[6]-句柄无效.[7]-存储控制块被损坏.[8]-存储 ...

  3. js在IE8+兼容String没有trim方法,写一个兼容ie8一下的浏览器的trim()方法

    方法一: String.prototype.trim = function(){ return Trim(this);}; function LTrim(str) {    var i;     fo ...

  4. LeetCode: Valid Sudoku 解题报告

    Valid SudokuDetermine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku boa ...

  5. Clipboard获取内容C#

    一.获取文本  textBox1.Text = Clipboard.GetData("Text").ToString(); 二.获取图像             pictureBo ...

  6. json demo

    package my.bigdata.movieTask.action; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.J ...

  7. 【C#】List<T>对象的深复制

    一.List对象中的T是值类型的情况(int 类型等) 对于值类型的List直接用以下方法就可以复制: List<T> oldList = new List<T>(); old ...

  8. win8.1 64位安装oracle10g客户端心得

    方法同win7 64位安装方法(http://www.cnblogs.com/winkey4986/p/3683568.html)下载Oracle 10g的客户端程序,文件名是 10201_clien ...

  9. vm虚拟化问题积累

    EXSi是什么?答:是一个独立的系统,承载了虚拟机管理台,虚拟机存储设备等核心要件的一个系统,需要靠客户机通过vsphere连接后进行管理. 问题集:一.建立桌面池找不到模板机问题: 目前因为此问题已 ...

  10. 决策树---ID3算法(介绍及Python实现)

    决策树---ID3算法   决策树: 以天气数据库的训练数据为例. Outlook Temperature Humidity Windy PlayGolf? sunny 85 85 FALSE no ...