一、理解操作系统

操作系统(OS)统管了计算机的所有硬件,并负责为应用程序分配和回收硬件资源。

硬件资源总是有限的,而应用程序对资源的欲望都是贪婪的。

当多个应用程序发生硬件资源争夺时,OS负责出面调度,保证多任务的资源分配以保证系统稳定执行。

只有CPU可以执行代码,所以应用程序(任务)执行前,必须申请到CPU资源,同一时刻,一个CPU只能执行一个任务代码。

计算机的CPU数量(资源方)远远小于需要执行的任务数(需求方),操作系统将CPU的资源按照时间片划分,并根据任务类型分配,各任务轮流使用CPU

CPU的执行/切换速度非常快,对于用户而言,多任务看上去就像同时执行一样,此称为并发。

如下是串行和并发的对比:


计算机的内存、硬盘、网卡、屏幕、键盘等硬件提供了数据交换的场所。

OS提供了IO接口以实现数据交换,数据交换的过程一般不需要CPU的参与。

IO接口有两种类型:

1、阻塞型IO

发生IO(数据交换)的时候,调用线程无法向下执行剩余代码,意图占用CPU但不执行任何代码,单线程阻塞型IO自身无法支持并发

2、非阻塞型IO

发生IO(数据交换)的时候,调用线程可以向下执行剩余代码,单线程非阻塞型IO自身可以支持并发

如下是阻塞型IO和非阻塞型IO的对比:

二、任务类型

根据一个任务执行期间占用CPU的比例来划分,有两种类型:

1、CPU密集型

绝大部分时间都是占用CPU并执行代码,比如科学计算任务

2、IO密集型

绝大部分时间都未占用CPU,而是在发生IO操作,比如网络服务

三、Socket模块

OS提供了阻塞IO和非阻塞IO两种类型的接口,应用程序可以自行选择。

Socket模块封装了两种接口,Socket模块提供的函数默认是阻塞IO类型。

用户可以选择手工切换至非阻塞IO类型,使用socketobj.setblocking(False)切换至非阻塞IO模式。

下面将通过一个简单的例子程序来记录对并发的学习思考及总结。

四、一个简单的C/S程序

客户端:循环接收用户的输入,并发送给服务器。从服务器接收反馈并打印至屏幕。

服务器:将接收到的用户输入,变成大写并返回给客户端。

客户端代码固定,主要思考服务器端的代码。

一般我们会这样写服务端代码:

# 服务器端
import socket addr = ('127.0.0.1', 8080)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(addr)
server.listen(5)
print('监听中...') while True: # 链接循环
conn, client = server.accept()
print(f'一个客户端上线 -> {client}') while True: # 消息循环
try:
request = conn.recv(1024)
if not request:
break
print(f"request: {request.decode('utf-8')}")
conn.send(request.upper()) except ConnectionResetError as why:
print(f'客户端丢失,原因是: {why}')
break conn.close()

客户端代码保持不变:

# 客户端
import socket addr = ('127.0.0.1', 8080)
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(addr)
print(f'服务器{addr}连接成功') while True: # 消息循环
inp = input('>>>').strip()
if not inp: continue try:
client.send(inp.encode('utf-8'))
response = client.recv(1024)
print(response.decode('utf-8')) except ConnectionResetError as why:
print(f'服务端丢失,原因是: {why}')
break client.close()

这种形式的编码我称为:单线程+阻塞IO+循环串行,有如下几个特点:

1、编码简单,模型简洁,可读性强

2、串行提供服务,用户使用服务器必须一个一个排队

单一线程的阻塞IO模型是无法支持并发的,如果要支持并发,有如下两类解决方案。

五、使用阻塞IO实现并发

单线程阻塞IO,本质上是无法实现并发的。因为一旦发生IO阻塞,线程就会阻塞,下方代码不会继续执行。如果要使用单线程阻塞IO来实现并发,需要增加线程数目或者进程数目,当某一个线程/进程发生阻塞的时候,由OS调度至另一个线程/进程执行。


方案一:阻塞IO+多进程

服务器端代码
import socket
from multiprocessing import Process def task(conn):
"""通信循环处理函数""" while True:
try:
request = conn.recv(1024)
if not request:
break
print(f"request: {request.decode('utf-8')}")
conn.send(request.upper()) except ConnectionResetError as why:
print(f'客户端丢失,原因是: {why}')
break if __name__ == '__main__': # windows下需要把新建进程写到main中,不然会报错
addr = ('127.0.0.1', 8080)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(addr)
server.listen(5)
print('监听中...') while True:
conn, client = server.accept()
print(f'一个客户端上线 -> {client}') p = Process(target=task, args=(conn,)) # 开启子进程处理与用户的消息循环
p.start()

将服务器对用户的消息循环操作封装到进程中,单进程依然会发生阻塞

进程之间的调度交由OS负责(重要)

进程太重,创建和销毁进程都需要比较大的开销,此外,一台设备所能涵盖的进程数量非常有限(一般就几百左右)。

进程之间的切换开销也不小。

当进程数小于等于CPU核心数的时候,可以实现真正的并行,当进程数大于CPU核心的时候,依然以并发执行。


方案二:阻塞IO+多线程

服务器端代码
import socket
from threading import Thread def task(conn):
"""通信循环处理函数""" while True:
try:
request = conn.recv(1024)
if not request:
break
print(f"request: {request.decode('utf-8')}")
conn.send(request.upper()) except ConnectionResetError as why:
print(f'客户端丢失,原因是: {why}')
break if __name__ == '__main__':
addr = ('127.0.0.1', 8080)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(addr)
server.listen(5)
print('监听中...') while True:
conn, client = server.accept()
print(f'一个客户端上线 -> {client}') t = Thread(target=task, args=(conn,)) # 启动多线程处理与用户的消息循环
t.start()

将服务器对用户的操作封装到线程中,单线程中依然会发生IO阻塞。

线程之间的调度交由OS负责(重要)。

线程较轻,创建和销毁的开销都比较小,但是线程数量也不会太大,一台设备一般能容纳几百至上千的线程。

注意:因为CPython的GIL的存在,使用CPython编写的多线程代码,只能使用一个CPU核心,换句话说,使用官方的解释器执行Python多线程代码,无法并行(单进程中)。

线程之间的切换开销比较小。

实际上,多线程的最大问题并不是并发数太少,而是数据安全问题。

线程之间共享同一进程的数据,在频繁发生IO操作的过程中,难免需要修改共享数据,这就需要增加额外的处理,当线程数量大量增加时,如何妥善处理数据安全的问题就会变成主要困难。


阻塞IO模型的思考和总结

1、多线程和多进程都是基于阻塞IO模式提供的并发,两者编程模型比较简单,可读性也很高。

2、如果使用多线程/进程的方案来提供并发,当线程/进程数量不断增大时,系统稳定性将会下降。虽然可以使用线程/进程池来提供一定的优化,但超过一定数量之后,池子发挥的效果也会越来越小。所以,两者都无法支持超大规模的并发(如C10M及以上)。

3、线程/进程切换都交由OS调度,调度策略依据OS的算法,应用程序无法主动控制,无法针对任务的特性做一些必要的调度算法调整。

4、编码思维直接、易理解,学习曲线平缓。

5、多线程/进程的方案可以理解为单纯的增加资源,如果要想支持超大规模的并发,单纯的增加资源的行为并不合理(资源不可能无限或者总得考虑成本以及效率,而且数量越大,原有的缺点就会越凸显)。

6、另一种解决方案的核心思路是:改变IO模型。

六、使用非阻塞IO实现并发

单线程非阻塞IO模型,本身就直接支持并发,为啥?请回头看看阻塞IO和非阻塞IO的流程图片。

非阻塞IO接口的核心是:调用线程一旦向OS发起IO调用,OS就直接返回结果,因此,调用线程不会被阻塞而可以执行下方代码。不过也正因为不会阻塞,调用线程无法判断立即返回的结果是不是期望结果,所以调用线程需要增加额外的操作对返回结果进行判断,正因为这一点,就增加了编程难度(增加的难度可不是一点啊)。

对立即返回的结果进行判断的方案有两种:

  1. 轮询

    线程定期/不定期主动发起查询和判断
  2. 回调函数+事件循环

    线程在发起IO时注册回调函数,然后统一处理事件循环

注意:非阻塞IO实现并发有多种解决方案,编程模型的可读性都不高,有些方案的编程思维甚至晦涩、难以理解、且编码困难。


方案一:非阻塞IO+Try+轮询

服务器端代码
import socket addr = ('127.0.0.1', 8080)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(addr)
server.setblocking(False)
server.listen(5)
print('监听中...') # 需要执行接收的conn对象放入此列表
recv_list = [] # 需要发送数据的conn对象和数据放入此列表
send_list = [] # 执行链接循环
while True:
try:
conn, client = server.accept()
# 执行成功,说明返回值是conn,client
print(f'一个客户端上线 -> {client}')
# 将成功链接的conn放入列表,当accept发生错误的时候执行conn的消息接收操作
recv_list.append(conn) except BlockingIOError:
# 执行accept不成功,意味着当前未有任何连接
# 在下一次执行accept之前,可以执行其他的任务(消息接收操作) # 无法对处于遍历期间的接收列表执行remove操作,使用临时列表存储需要删除的conn对象
del_recv_list = [] # 对已经成功链接的conn列表执行接收操作
for conn in recv_list:
# 对每一个conn对象,执行recv获取request
try:
# recv也是非阻塞
request = conn.recv(1024)
# 执行成功,就要处理request
if not request:
# 当前conn链接已经失效
conn.close()
# 不再接收此conn链接的消息,将失效conn加入删除列表
del_recv_list.append(conn)
# 当前conn处理完毕,切换下一个
continue
# request有消息,处理,然后需要加入发送列表中
response = request.upper()
# 发送列表需要存放元组,发送conn和发送的数据
send_list.append((conn, response)) except BlockingIOError:
# 当前conn的数据还没有准备好,处理下一个conn
continue
except ConnectionResetError:
# 当前conn失效,不再接收此conn消息
conn.close()
del_recv_list.append(conn) # 无法处理发送列表遍历期间的remove,使用临时列表
del_send_list = [] # 接收列表全部处理完毕,准备处理发送列表
for item in send_list:
conn = item[0]
response = item[1] # 执行发送
try:
conn.send(response)
# 发送成功,就应该从发送列表中移除此项目
del_send_list.append(item) except BlockingIOError:
# 发送缓冲区有可能已经满了,留待下次发送处理
continue
except ConnectionResetError:
# 链接失效
conn.close()
del_recv_list.append(conn)
del_send_list.append(item) # 删除接收列表中已经失效的conn对象
for conn in del_recv_list:
recv_list.remove(conn) # 删除发送列表中已经发送或者不需要发送的对象
for item in del_send_list:
send_list.remove(item)

服务器使用单线程实现了并发。

对于accept接收到的多个conn对象,加入列表,并通过遍历读取列表、发送列表来提供多用户访问。

单线程中的Socket模块提供的IO函数都被设置成:非阻塞IO类型。

增加了额外操作:对非阻塞调用立即返回的结果,使用了Try来判断是否为期望值。

因为不知道何时返回的结果是期望值,所以需要不停的发起调用,并通过Try来判断,即,轮询。

两次轮询期间,线程可以执行其他任务。但是模型中也只是不停的发起轮询,并没有利用好这些时间。

编码模型复杂,难理解。

优化:此模型中的主动轮询的工作由程序负责,其实可以交由OS代为操作。这样的话,应用程序就不需要编写轮询的部分,可以更聚焦于业务逻辑(upper()的部分),Python提供了Select模块以处理应用程序的轮询工作。


方案二:非阻塞IO+Select代理轮询

服务器端代码
import socket
import select addr = ('127.0.0.1', 8080)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(addr)
server.setblocking(False)
server.listen(5)
print('监听中...') # 最开始的server对象需要被监听,一旦可读,说明可以执行accept
read_list = [server,] # 需要监听的写列表,一旦wl中可写对象处理完send,应该将它也从此列表中删除
write_list = [] # 用于临时存放某一个sock对象需要发送的数据
data_dic = {} # 不停的发起select查询
while True: # 发起select查询,尝试得到可以操作的socket对象
rl, wl, xl = select.select(read_list, write_list, [], 1) # 操作可读列表
for sock in rl:
# 如果可读列表中的对象是server,意味着有链接,则server可执行accept
if sock is server:
# 执行accept一定不会报错,所以不需要try
conn, client = sock.accept()
# 一旦获得conn,就需要将此conn加入可读列表
read_list.append(conn)
else:
# 说明可读的对象是普通的conn对象,执行recv时要处理链接失效问题
try:
request = sock.recv(1024) except (ConnectionResetError, ConnectionAbortedError):
# 此链接失效
sock.close()
read_list.remove(sock)
else:
# 还需要继续判断request的内容
if not request:
# 说明此conn链接失效
sock.close()
# 不再监控此conn
read_list.remove(sock)
continue
# 处理请求
response = request.upper()
# 加入发送列表
write_list.append(sock)
# 保存发送的数据
data_dic[sock] = response # 操作可写列表
for sock in wl:
# 执行发送操作,send也会出错
try:
sock.send(data_dic[sock])
# 发送完毕后,需要移除发送列表
write_list.remove(sock)
# 需要移除发送数据
data_dic.pop(sock) except (ConnectionResetError, ConnectionAbortedError):
# 此链接失效
sock.close()
read_list.remove(sock)
write_list.remove(sock)

服务器使用单线程实现了并发。

使用了Select模块之后,应用程序不再需要编写主动轮询的代码,而是将此部分工作交由Select模块的select函数代为处理。

应用程序只需要遍历select函数返回的可操作socket列表,并处理相关业务逻辑即可。

虽然应用程序将轮询工作甩给了select,自己不用编写代码。不过select函数的底层接口效率不高,使用epoll接口可以提升效率,此接口被封装在Selectors模块中。

此外,select函数是一个阻塞IO,在并发数很少的时候,线程大部分时间会阻塞在select函数上。所以select函数应该适用于随时随刻都有socket准备好、大规模并发的场景。

编码困难,模型难理解。


select函数接口说明


def select(rlist, wlist, xlist, timeout=None): # real signature unknown; restored from __doc__
"""
select(rlist, wlist, xlist[, timeout]) -> (rlist, wlist, xlist) Wait until one or more file descriptors are ready for some kind of I/O.
The first three arguments are sequences of file descriptors to be waited for:
rlist -- wait until ready for reading
wlist -- wait until ready for writing
xlist -- wait for an ``exceptional condition''
If only one kind of condition is required, pass [] for the other lists.
A file descriptor is either a socket or file object, or a small integer
gotten from a fileno() method call on one of those. The optional 4th argument specifies a timeout in seconds; it may be
a floating point number to specify fractions of seconds. If it is absent
or None, the call will never time out. The return value is a tuple of three lists corresponding to the first three
arguments; each contains the subset of the corresponding file descriptors
that are ready. *** IMPORTANT NOTICE ***
On Windows, only sockets are supported; on Unix, all file
descriptors can be used.
"""
pass
  1. 输入4个参数(3位置,1默认),返回3个值
  2. select函数是阻塞IO,函数的返回必须等到至少1个文件描述符准备就绪
  3. 位置参数rlist/wlist/xlist分为是:需要监控的读列表/写列表/例外列表(第3参数暂不理解)
  4. windows下,列表中只能放socket对象,unix下,可以放任何文件描述符
  5. 第4参数如果是None(默认),则会永久阻塞,否则按照给定的值(单位是秒)发生超时,可以使用小数如0.5秒
  6. 返回值是3个列表,里面涵盖的是可以操作的文件描述符对象

关于轮询效率的思考

轮询操作,效率不高。

轮询的工作视角是:发起者定期/不定期主动发起询问,如果数据没有准备好,就继续发起询问。如果数据准备好了,发起者就处理这些数据。

假设,调用者在第35次主动轮询的时候发现数据准备好了,那么意味着前34次主动轮询的操作是没有任何收益的。

调用者要想知道数据是否就绪,就要主动询问,而主动询问的效率又比较低。

这个矛盾的核心关键在于:如何得知数据准备就绪这件事呢?

使用回调函数+事件循环

此种方案中,调用者不会主动发起轮询,而是被动的等待IO操作完成,并由OS向调用者发起准备就绪的事件通知。

方案三:非阻塞IO+Selectors+回调函数+事件循环

# 服务器端代码
import socket
from selectors import DefaultSelector, EVENT_READ def recv_read(conn, mask):
# recv回调函数
try:
request = conn.recv(1024)
if not request:
# 意味着链接失效,不再监控此socket
conn.close()
selector.unregister(conn)
# 结束此回调的执行
return None
# 链接正常,处理数据
conn.send(request.upper()) except (ConnectionResetError, ConnectionAbortedError):
# 链接失效
conn.close()
selector.unregister(conn) def accept_read(server, mask):
# accept回调函数
conn, client = server.accept()
print(f'一个客户端上线{client}') # 监听conn对象的可读事件的发生,并注册回调函数
selector.register(conn, EVENT_READ, recv_read) if __name__ == '__main__':
addr = ('127.0.0.1', 8080)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(addr)
server.setblocking(False)
server.listen(5)
print('监听中...') # 获取对象
selector = DefaultSelector()
# 第一个注册,监听server对象的可读事件的发生,并注册回调函数
selector.register(server, EVENT_READ, accept_read) # 执行事件循环
while True:
# 循环调用select,select是阻塞调用,返回就绪事件
events = selector.select()
for key, mask in events:
# 获取此事件预先注册的回调函数
callback = key.data
# 对此事件中准备就绪的socket对象执行回调
callback(key.fileobj, mask)

服务器使用单线程实现了并发。

OS使用了Selectors自行选择最优的底层接口监听socket对象。

程序不再需要主动发起查询,而是注册回调函数。

增加事件循环,用于处理准备就绪的socket对象,调用预先注册的回调函数。

应用程序不用再关注如何判断非阻塞IO的返回值,而将精力聚焦于回调函数的编写。

方案四:非阻塞IO+协程+回调函数+事件循环(待后续补充)

pass


非阻塞IO的思考和总结(待后续补充)

  1. 如果将一个IO密集型任务的IO模型设置为非阻塞,则此任务类型将会从IO密集型逐渐转变为CPU密集型。
  2. 非阻塞IO的编程模型比较困难,可读性较差,模型理解困难
  3. 我认为,含有非阻塞IO+回调+事件循环的编程模型,就是异步编程。

    pass

七、关于同步/异步,阻塞IO/非阻塞IO的区别和思考

  1. 阻塞IO和非阻塞IO指的是OS提供的两种IO接口,区别在于调用时是否立即返回。
  2. 同步和异步指的是两个任务之间的执行模型

    同步:两个任务关联性大,任务相互依赖,对任务执行的前后顺序有一定要求

    异步:两个任务关联性小,任务可以相互独立,任务执行顺序没有要求
  3. 网上有很多关于同步阻塞、同步非阻塞、异步阻塞、异步非阻塞的各种理解,站在不同的角度,理解都不一样。我觉得应该把同步/异步划为一类,用于描述任务执行模型,而把阻塞/非阻塞IO划为一类,用于描述IO调用模型。

如下是我根据网上的各种解释,结合自己的思考给出的一个关于同步/异步简单的例子:

  1. 同步

    第一天,晚饭时间到了,你饿了,你走到你老婆面前说:老婆,我饿了,快点做饭!你老婆回答:好的,我去做饭。

    你跟着老婆走到厨房,你老婆花了30分钟的时间给你做饭。这期间,你就站在身边,啥也不干,就这样注视着她,你老婆问你:你站这干嘛?你说:我要等你做完饭再走。30分钟后,你吃到了晚饭。

  2. 异步+轮询

    第二天,晚饭时间到了,你饿了,你大喊:老婆,我饿了,快点做饭!你老婆回答:好的,我去做饭。

    你老婆花了30分钟的时间给你做饭,但是你不再跟着你老婆走到厨房。这期间,你在客厅看电视,不过你实在饿得不行了,于是你每过5分钟,就跑到厨房询问:老婆,饭做好了没?你老婆回答:还要一会。30分钟后,你吃到了晚饭。

  3. 异步+事件通知

    第三天,晚饭时间到了,你饿了,你大喊:老婆,我饿了,快点做饭!你老婆回答:好的,我去做饭。

    你老婆花了30分钟的时间给你做饭,你也不再跟着你老婆走到厨房。这期间,你在客厅看电视,你知道你老婆在做饭,你也不会去催她,专心看电视。30分钟后,你老婆喊你:饭做好了。最后你吃到了晚饭。

python并发学习总结的更多相关文章

  1. Python并发学习

    #Python并发 多任务 多进程 多线程 线程同步 #多任务处理 多任务处理:使得计算机可以同时处理多个任务 听歌的同时QQ聊天.办公.下载文件 实现方式:多进程.多线程 #程序和进程 程序:是一个 ...

  2. Day1 Python基础学习

    一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编写程序,本质仍然是直接操作 ...

  3. Day1 Python基础学习——概述、基本数据类型、流程控制

    一.Python基础学习 一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编 ...

  4. Python入门学习笔记4:他人的博客及他人的学习思路

    看其他人的学习笔记,可以保证自己不走弯路.并且一举两得,即学知识又学方法! 廖雪峰:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958 ...

  5. Python进阶(4)_进程与线程 (python并发编程之多进程)

    一.python并发编程之多进程 1.1 multiprocessing模块介绍 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大 ...

  6. python高级学习目录

    1. Linux介绍.命令1.1. 操作系统(科普章节) 1.2. 操作系统的发展史(科普章节) 1.3. 文件和目录 1.4. Ubuntu 图形界面入门 1.5. Linux 命令的基本使用 1. ...

  7. 快速了解Python并发编程的工程实现(上)

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...

  8. Python并发编程-多进程

    Python并发编程-多进程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.多进程相关概念 由于Python的GIL全局解释器锁存在,多线程未必是CPU密集型程序的好的选择. ...

  9. Python核心技术与实战——十八|Python并发编程之Asyncio

    我们在上一章学习了Python并发编程的一种实现方法——多线程.今天,我们趁热打铁,看看Python并发编程的另一种实现方式——Asyncio.和前面协程的那章不太一样,这节课我们更加注重原理的理解. ...

随机推荐

  1. Git config 配置文件

    一.Git已经在你的系统中了,你会做一些事情来客户化你的Git环境.你只需要做这些设置一次:即使你升级了,他们也会绑定到你的环境中.你也可以在任何时刻通过运行命令来重新更改这些设置. Git有一个工具 ...

  2. openfire搭建spackweb在线即时聊天

    1.首先去openFire官网下载openFire以及spackweb,以下地址可以2样东西一次打包下载.http://download.csdn.net/detail/a315157973/8048 ...

  3. 深海划水队项目----七天冲刺之day3

    上完选修后的站立式会议: 工作进度 昨天已完成的工作: 推进开发进度,进一步理清开发思路. 今天计划完成的工作: 生成游戏块的类,其中包括7种不同的游戏块,每个游戏块又可以通过旋转得到另外一种形态. ...

  4. 记录---IIS显示asp.net程序的具体错误

    原来IIS设置成显示单一的错误页面 但是最近的服务器页面报错,但是本地确实完好的:所以想着让服务器显示具体的报错 网上找到两种方法: 先说第一种有效的: 通过 web.config 配置 其实,上面在 ...

  5. win10下安装配置iis,发布iis

    老有朋友不会配置iis跟发布iis,今天整理一下,欢迎参考借鉴 打开控制面板 找到 程序 点击程序  找到启用或关闭windows功能 在windows服务中找到 Internet Informati ...

  6. connect db2 by tools

  7. POJ的练习题

    http://wenku.baidu.com/link?url=PT1gkBWC3eXuzzs0QqWklC0VNYkf5ynxBFguXPGYR22l1D2tXmQ4VjnsWvbFyvj1fqGi ...

  8. ClamAV学习【2】——clamscan入口函数浏览

    就简单给代码加上些注释,方便理解.第一次浏览,应该会有不正确的理解.后面会继续学习修改. 文件:clamscan\clamscan.c 代码如下: nt main(int argc, char **a ...

  9. java学习笔记—校验码的实现(15)

    校验码的出现主要的任务是解决表单的重复提交问题. public void doGet(HttpServletRequest request, HttpServletResponse response) ...

  10. 多个音频audio2

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...