Description

有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值。

n<=3000,D<=1e9

题面

Solution

容易发现 \(f(D)\) 是一个 \(n\) 次多项式.

求出 \(f(1),f(2),...,f(n+1)\) 之后拉格朗日插值即可.

#include<bits/stdc++.h>
using namespace std;
const int N=3010,mod=1e9+7;
int n,m,head[N],to[N*2],nxt[N*2],fa[N],num=0,f[N][N],inv[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void dfs(int x){
for(int i=1;i<=n+1;i++)f[x][i]=1;
for(int i=head[x],u;i;i=nxt[i]){
if((u=to[i])==fa[x])continue;
dfs(u);
int sum=0;
for(int j=1;j<=n+1;j++){
sum=(sum+f[u][j])%mod;
f[x][j]=1ll*f[x][j]*sum%mod;
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>m;
for(int i=2;i<=n;i++)cin>>fa[i],link(fa[i],i);
dfs(1);
for(int i=2;i<=n+1;i++)f[1][i]=(f[1][i]+f[1][i-1])%mod;
if(m<=n+1)cout<<f[1][m],exit(0);
inv[0]=inv[1]=1;
for(int i=2;i<=n;i++)inv[i]=(mod-1ll*(mod/i)*inv[mod%i]%mod)%mod;
int ans=0;
for(int i=1;i<=n+1;i++){
int t=1;
for(int j=1;j<=n+1;j++){
if(i==j)continue;
t=1ll*t*(m-j)%mod*(i>=j?inv[i-j]:-inv[j-i])%mod;
}
ans=(ans+1ll*t*f[1][i])%mod;
}
cout<<(ans+mod)%mod;
return 0;
}

Codeforces F. Cowmpany Cowmpensation的更多相关文章

  1. Codeforces 995F Cowmpany Cowmpensation - 组合数学

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个棵$n$个点的有根树和整数$D$,给这$n$个点标号,要求每个节点的标号是正整数,且不超过父节点的标号,根节点的标号不得超过D. 很容 ...

  2. codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值

    给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...

  3. 【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)

    传送门 题意: 给出一颗树,每个结点有取值范围\([1,D]\). 现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值. 问有多少种取值方案. 思路: 手画一下发现,对于一颗大小为 ...

  4. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

  5. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  6. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  7. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  8. [CF995F]Cowmpany Cowmpensation

    codeforces description 一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值.求方案数.\(n\le3000,n\le10^9\) ...

  9. [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]

    题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) ...

随机推荐

  1. 关于StreamReader.ReadToEnd方法

    以前写抓取网页的代码喜欢用ReadToEnd,因为简单省事,后来发现,在爬取网页的时候,如果网速很慢,ReadToEnd超时的几率很大.使用Read改写后,超时几率大大减小,完整代码如下: /// & ...

  2. Android - Telephony API 1.6

    SignalStrength: 1. public int getGsmSignalStrength() : GSM Signal Strength, valid values are (0-31, ...

  3. 使用ssm实现校验密码

    由于审题不清,在完成作业“servlet实现进行用户名和密码验证”中使用了jdbc连接数据库的方式实现,没用静态方式验证,故本次作业使用ssm实现 本次作业上传到百度网盘:链接:https://pan ...

  4. NOIP2013PUZZLE

    #include<cstdio> #include<cstring> #define MIN(A,B) (A)<(B)?(A):(B) using namespace s ...

  5. You can't specify target table 'e' for update in FROM clause

    UPDATE emp e SET e.salary=e.salary+7 WHERE e.id IN(SELECT e1.id FROM emp e1,dept d WHERE e1.dep_id=d ...

  6. 【ocp-12c】最新Oracle OCP-071考试题库(44题)

    44.(9-12)choose all that apply View the Exhibit and examine the details of the ORDER_ITEMS table. Ev ...

  7. InnoDB: The innodb_system data file 'ibdata1' must be writable错误

    重新安装percona5.7过程中,启动mysql服务总是报如下的错误 --10T02::.781070Z [ERROR] InnoDB: The innodb_system data file 'i ...

  8. leetcode-39-组合总和(有趣的递归)

    题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无 ...

  9. SparkSQL开窗函数 row_number()

    开始编写我们的统计逻辑,使用row_number()函数 先说明一下,row_number()开窗函数的作用 其实就是给每个分组的数据,按照其排序顺序,打上一个分组内行号 比如说,有一个分组20151 ...

  10. 何在不联网的情况下ping通主机与虚拟机

    选择NAT模式,VM对windows选择ping操作时选择VMnet8的IP地址.