A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics when he was young, and was entangled in some mathematical curses. He studied hard until he reached adulthood and decided to use his knowledge to escape the castle.

There are NN rooms from the place where he was imprisoned to the exit of the castle. In the i^{th}ith room, there is a wizard who has a resentment value of a[i]a[i]. The prince has MM curses, the j^{th}jth curse is f[j]f[j], and f[j]f[j] represents one of the four arithmetic operations, namely addition('+'), subtraction('-'), multiplication('*'), and integer division('/'). The prince's initial resentment value is KK. Entering a room and fighting with the wizard will eliminate a curse, but the prince's resentment value will become the result of the arithmetic operation f[j]f[j] with the wizard's resentment value. That is, if the prince eliminates the j^{th}jth curse in the i^{th}ith room, then his resentment value will change from xx to (x\ f[j]\ a[i]x f[j] a[i]), for example, when x=1, a[i]=2, f[j]=x=1,a[i]=2,f[j]='+', then xx will become 1+2=31+2=3.

Before the prince escapes from the castle, he must eliminate all the curses. He must go from a[1]a[1] to a[N]a[N] in order and cannot turn back. He must also eliminate the f[1]f[1] to f[M]f[M] curses in order(It is guaranteed that N\ge MN≥M). What is the maximum resentment value that the prince may have when he leaves the castle?

Input

The first line contains an integer T(1 \le T \le 1000)T(1≤T≤1000), which is the number of test cases.

For each test case, the first line contains three non-zero integers: N(1 \le N \le 1000), M(1 \le M \le 5)N(1≤N≤1000),M(1≤M≤5) and K(-1000 \le K \le 1000K(−1000≤K≤1000), the second line contains NN non-zero integers: a[1], a[2], ..., a[N](-1000 \le a[i] \le 1000)a[1],a[2],...,a[N](−1000≤a[i]≤1000), and the third line contains MM characters: f[1], f[2], ..., f[M](f[j] =f[1],f[2],...,f[M](f[j]='+','-','*','/', with no spaces in between.

Output

For each test case, output one line containing a single integer.

样例输入复制

3
2 1 5
2 3
/
3 2 1
1 2 3
++
4 4 5
1 2 3 4
+-*/

样例输出复制

2
6
3

题目来源

ACM-ICPC 2018 焦作赛区网络预赛

编辑代码
 

题意:

有1-n间房 每间有一个数ai

有1-m个操作fj 每种操作可能是+-*/

有一个初始值k 走到第i个房间如果进行了第j个操作 得到结果k fj ai

房间和操作的顺序不能改变

问最后得到的最大值

思路:

就是一个比较简单的dp 发现自己dp总是写不好

最近不如多练点dp吧

dp[i][j]表示在第i间房做j个操作 i一定是不能小于j

加和减的话比较常规 乘除涉及到负数的话就不一定了

所以需要既存最大值也要存最小值

还要注意初始化的赋值

 //#include"pch.h"

 #include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#include<cstring>
#include<set>
#include<stack>
//#include<bits/stdc++.h> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = ;
int t;
int n, m, k;
int a[maxn];
LL dpmin[maxn][], dpmax[maxn][];
char f[]; int main()
{ scanf("%d", &t);
while (t--) {
memset(dpmax, -inf, sizeof(dpmax));
memset(dpmin, inf, sizeof(dpmin));
//cout<<dpmax[0][0]<<endl<<dpmin[0][0]<<endl;
scanf("%d%d%d", &n, &m, &k);
for (int i = ; i <= n; i++) {
scanf("%d", &a[i]);
}
getchar();
for (int i = ; i <= m; i++) {
scanf("%c", &f[i]);
} for (int i = ; i <= n; i++) {
dpmax[i][] = dpmin[i][] = k;
}
for (int j = ; j <= m; j++) {
for (int i = j; i <= n; i++) {
dpmax[i][j] = dpmax[i - ][j];//第i间不做
dpmin[i][j] = dpmin[i - ][j];
if (f[j] == '+') {
dpmax[i][j] = max(dpmax[i][j], dpmax[i - ][j - ] + a[i]);
dpmin[i][j] = min(dpmin[i][j], dpmin[i - ][j - ] + a[i]);
}
if (f[j] == '-') {
dpmax[i][j] = max(dpmax[i][j], dpmax[i - ][j - ] - a[i]);
dpmin[i][j] = min(dpmin[i][j], dpmin[i - ][j - ] - a[i]);
}
if (f[j] == '*') {
dpmax[i][j] = max(dpmax[i][j], dpmax[i - ][j - ] * a[i]);
dpmax[i][j] = max(dpmax[i][j], dpmin[i - ][j - ] * a[i]);
dpmin[i][j] = min(dpmin[i][j], dpmax[i - ][j - ] * a[i]);
dpmin[i][j] = min(dpmin[i][j], dpmin[i - ][j - ] * a[i]);
}
if (f[j] == '/') {
dpmax[i][j] = max(dpmax[i][j], dpmax[i - ][j - ] / a[i]);
dpmax[i][j] = max(dpmax[i][j], dpmin[i - ][j - ] / a[i]);
dpmin[i][j] = min(dpmin[i][j], dpmax[i - ][j - ] / a[i]);
dpmin[i][j] = min(dpmin[i][j], dpmin[i - ][j - ] / a[i]);
}
}
}
printf("%lld\n", dpmax[n][m]);
}
return ;
}

焦作网络赛B-Mathematical Curse【dp】的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛 B Mathematical Curse(DP)

    https://nanti.jisuanke.com/t/31711 题意 m个符号必须按顺序全用,n个房间需顺序选择,有个初始值,问最后得到的值最大是多少. 分析 如果要求出最大解,维护最大值是不能 ...

  2. 焦作网络赛K-Transport Ship【dp】

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  3. ACM-ICPC2018焦作网络赛 Mathematical Curse(dp)

    Mathematical Curse 22.25% 1000ms 65536K   A prince of the Science Continent was imprisoned in a cast ...

  4. 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat

    题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...

  5. 2018焦作网络赛Mathematical Curse

    题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...

  6. ACM-ICPC2018焦作网络赛 Transport Ship(二进制背包+方案数)

    Transport Ship 25.78% 1000ms 65536K   There are NN different kinds of transport ships on the port. T ...

  7. 焦作网络赛E-JiuYuanWantstoEat【树链剖分】【线段树】

    You ye Jiu yuan is the daughter of the Great GOD Emancipator. And when she becomes an adult, she wil ...

  8. 焦作网络赛L-Poor God Water【矩阵快速幂】

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  9. ACM-ICPC2018焦作网络赛 Participate in E-sports(大数开方)

    Participate in E-sports 11.44% 1000ms 65536K   Jessie and Justin want to participate in e-sports. E- ...

随机推荐

  1. 【转】C# URL短地址压缩算法及短网址原理解析

    这篇文章主要介绍了C# URL短地址压缩算法及短网址原理解析,本文重点给出了算法代码,需要的朋友可以参考下 短网址应用已经在全国各大微博上开始流行了起来.例如QQ微博的url.cn,新郎的sinaur ...

  2. pyqt二进制和图片的转换

    参考:http://blog.chinaunix.net/uid-28194872-id-3516936.html MySQL数据库要想插入图片,其字段需要是BLOB类型.BLOB (binary l ...

  3. php十行代码将xml转成数组

    <?php header("Content-Type:text/html;charset=utf-8"); function xml2array($filename){ $x ...

  4. Oracle过程及函数的参数模式详解

    一.In.out.in out模式 在Oracle中过程与函数都可以有参数,参数的类型可以指定为in.out.in out三种模式. 三种参数的具体说明,如下图所示: (1)in模式 in模式是引用传 ...

  5. 第三章 SqlSessionFactoryBean(MyBatis)

    SqlSessionFactoryBean 在基本的 MyBatis 中,session 工厂可以使用 SqlSessionFactoryBuilder 来创建.而在 MyBatis-Spring 中 ...

  6. IPV6设置

    C:\Windows\System32\drivers\etc 目录下修改hosts文件. 网上有更新的ipv6 hosts文件,复制下来~ 别人不断更新的: https://raw.githubus ...

  7. linux用户及用户组操作

    Linux用户.用户组权限管理详解 Linux用户管理三个重要文件详解: Linux登陆需要用户名.密码./etc/passwd 文件保存用户名.登录Linux时,Linux 先查找 /etc/pas ...

  8. stylus入门使用方法

    https://segmentfault.com/a/1190000002712872

  9. System.Func<>与System.Action<>

    使用并行编程可以同时操作多个委托,在介绍并行编程前先简单介绍一下两个泛型委托System.Func<>与System.Action<>. Func<>是一个能接受多 ...

  10. ch5-处理数据,抽取-整理-推导

    场景:教练kelly有4个选手James\Sarah\Julie\Mikey,他们每跑600米,教练就会计时并把时间记录在计算机的一个文件中,总共4个文件:James.txt\Sarah.txt\Ju ...