【BZOJ3242】【NOI2013】快餐店(动态规划)

题面

BZOJ

题解

假设我们要做的是一棵树,那么答案显然是树的直径的一半。

证明?

假设树的直径是\(2d\),那么此时最远点的距离是\(d\)

假设存在一个点的距离大于\(d\),那么直径可以由这个点到达直径的一个端点拼出。

所以最远点距离为\(d\)。

现在的问题在基环树上。

可以用\(dp\)求出所有外向树上的直径以及能够一直向下延伸的最大深度\(f[i]\)。

显然最终在基环树上的答案一定只会经过基环树的一部分,

也就是如果从某条不在答案的路径上,把它断开,对于答案没有任何影响。

那么考虑枚举从哪个位置断开,然后维护一下最长链就好了。

我们把环上的点顺次放在一排,然后编号\(1..m\)

假设\(1->2->3->...->x\)的链长度为\(W[x]\)

那么最长链就是\(max(f[i]+f[j]+W[j]-W[i]),i\lt j\)

每次枚举断点,然后扫一遍求最大值,这样子的复杂度是\(O(n^2)\)的。

然后就是一堆奇奇怪怪的优化了,感觉我自己都说不清。

因为我是照着别人写的了 。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next,w;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
bool cir[MAX];
int p[MAX<<1],top,dep[MAX],fa[MAX],n;
ll f[MAX],ans,W[MAX<<1],Cir=1e18,pre1[MAX],pre2[MAX],l1[MAX],l2[MAX];
int Q[MAX<<1],H,T;
void findcir(int u,int ff)
{
dep[u]=dep[ff]+1;fa[u]=ff;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
if(dep[v]&&dep[v]>dep[u])
{
for(int j=v;j!=u;j=fa[j])cir[j]=true,p[++top]=j;
p[++top]=u;cir[u]=true;continue;
}
if(!dep[v])findcir(v,u);
}
}
void dfs(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff||cir[v])continue;
dfs(v,u);ans=max(ans,f[u]+f[v]+e[i].w);
f[u]=max(f[u],f[v]+e[i].w);
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
int u=read(),v=read(),w=read();
Add(u,v,w);Add(v,u,w);
}
findcir(1,0);
for(int i=1;i<=top;++i)dfs(p[i],0);p[top+1]=p[1];
for(int i=1;i<=top;++i)
for(int j=h[p[i]];j;j=e[j].next)
if(e[j].v==p[i+1]){W[i]=e[j].w;break;}p[top+1]=0;
ll sum=0,mx=0;
for(int i=1;i<=top;++i)
{
sum+=W[i-1];pre1[i]=max(pre1[i-1],f[p[i]]+sum);
l1[i]=max(l1[i-1],f[p[i]]+mx+sum);
mx=max(mx,f[p[i]]-sum);
}
ll tot=W[top];W[top]=sum=mx=0;
for(int i=top;i;--i)
{
sum+=W[i];pre2[i]=max(pre2[i+1],f[p[i]]+sum);
l2[i]=max(l2[i+1],f[p[i]]+mx+sum);
mx=max(mx,f[p[i]]-sum);
}
Cir=l1[top];
for(int i=1;i<top;++i)
Cir=min(Cir,max(max(l1[i],l2[i+1]),pre1[i]+pre2[i+1]+tot));
ans=max(ans,Cir);
printf("%.1lf\n",ans/2.0);
return 0;
}

【BZOJ3242】【NOI2013】快餐店(动态规划)的更多相关文章

  1. bzoj3242 [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  2. BZOJ3242 [Noi2013]快餐店 【环套树 + 单调队列dp】

    题目链接 BZOJ3242 题解 题意很清楚,找一点使得最远点最近 如果是一棵树,就是直径中点 现在套上了一个环,我们把环单独拿出来 先求出环上每个点外向树直径更新答案,并同时求出环上每个点外向的最远 ...

  3. bzoj 3242: [Noi2013]快餐店 章鱼图

    3242: [Noi2013]快餐店 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 266  Solved: 140[Submit][Status] ...

  4. P1399 [NOI2013] 快餐店 方法记录

    原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...

  5. 动态规划:NOI2013 快餐店

    Description 小 T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近 的地方. 快餐店的顾客分布 ...

  6. BZOJ3242/UOJ126 [Noi2013]快餐店

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. 3242: [Noi2013]快餐店 - BZOJ

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  8. NOI2013 快餐店

    http://uoj.ac/problem/126 总的来说,还是很容易想的,就是有点恶心. 首先,很明显只有一个环. 我们先找出这个环,给各棵树编号id[i],然后各棵树分别以环上的点为根,求出每个 ...

  9. bzoj 3242: [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  10. CF835F Roads in the Kingdom/UOJ126 NOI2013 快餐店 树的直径

    传送门--CF 传送门--UOJ 题目要求基环树删掉环上的一条边得到的树的直径的最小值. 如果直接考虑删哪条边最优似乎不太可做,于是考虑另一种想法:枚举删掉的边并快速地求出当前的直径. 对于环上的点, ...

随机推荐

  1. 关于Python的装饰器(1)

    Python的装饰器的概念,一直有点微妙.之前在StackOverflow上看过一篇感觉说明的很清楚的介绍: *A decorator must accept a function as an arg ...

  2. selenium webdriver API详解(一)

    本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:打开某个网址:get() from selenium import ...

  3. Egret入门(二)--windows下环境搭建

    准备材料 安装Node.js TypeScript编辑器 HTTP服务器(可选) Chorme(可选) Egret 安装Node.js 打开www.nodejs.org 下载安装(全部next,全默认 ...

  4. [network]数字签名

    数字签名(又称公钥数字签名.电子签章)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法.一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证. ...

  5. sklearn中的交叉验证(Cross-Validation)

    这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sk ...

  6. VisualSVN Server的迁移

    VisualSVN Server迁移涉及到两种情况: 第一种情况:VisualSVN Server没有更换电脑或者服务器,只是修改Server name. 第二种情况:当VisualSVN Serve ...

  7. java-sun.misc.BASE64Decode AccessException

    在使用sun.misc中base64类时,eclipse可能会报找不到Access异常 只需要修改一下访问方式即可,如下: 右键项目->属性->Javabulid path->jre ...

  8. python3【基础】-字符串 常用的方法

    字符串一个最重要的特性就是不可修改. name.capitalize() 首字母大写 name.casefold() 大写全部变小写 name.center(50,"-") 输出 ...

  9. es6 babel编译

    本文主要参照阮一峰的es6入门,为提高自己写了一份随笔. 原文地址请戳这里  ECMAScript 6 入门 ECMAScript 6是JavaScript语言的下一代标准.因为当前版本的ES6是在2 ...

  10. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...