Problem Description

Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.

Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

Input

The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.

Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

Output

For each test case, print the number of choices. Use the format in the example.

Sample Input

2

1 3 1 5 1

1 11014 1 14409 9

Sample Output

Case 1: 9

Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

Description(CHN)

求 \(\sum_{i=1}^b\sum_{j=1}^d[gcd(i,j)=k]\)

Solution

水一道题,随便莫反一下就好了

设\(f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]\)

设\(F(d)=\sum_{i=1}^n\sum_{j=1}^m[d|gcd(i,j)]=\lfloor \frac{n}{d}\rfloor \lfloor \frac{m}{d} \rfloor=\sum_{d|n}f(n)\)

所以 \(f(d)=\sum_{d|p}\mu(\frac{p}{d})F(p)=\sum_{t=1}^{\frac{min(n,m)}{d}}\mu(t)F(dt)=\sum_{t=1}^{\frac{min(n,m)}{d}}\mu(t)\lfloor \frac{n}{dt} \rfloor \lfloor \frac{m}{dt} \rfloor\)

最后, \(ans=f(1)=\sum_{t=1}^{min(n,m)}\mu(t)\lfloor \frac{n}{t} \rfloor \lfloor \frac{m}{t} \rfloor\)

整除分块算(似乎都不需要整除分块?)

哦,对于无序对的处理,发现无序对的重复只存在于 \(i<=min(n,m),j<=min(n,m)\) 的情况下,否则一方将达不到另一方的数

那么算出总的,减去这个 \(min\) 的答案除二的商,就是最后的结果了(体会体会)

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10;
int T,vis[MAXN],prime[MAXN],cnt,mu[MAXN],s[MAXN],a,b,c,d,k;
ll ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)s[i]=s[i-1]+mu[i];
}
inline ll solve(int n,int m)
{
ll res=0;
for(register int i=1;;)
{
if(i>min(n,m))break;
int j=min(n/(n/i),m/(m/i));
res+=1ll*(n/i)*(m/i)*(s[j]-s[i-1]);
i=j+1;
}
return res;
}
int main()
{
init();
read(T);
for(register int i=1;i<=T;++i)
{
printf("Case %d: ",i);
read(a);read(b);read(c);read(d);read(k);
if(!k)
{
puts("0");
continue;
}
b/=k;d/=k;
write(solve(b,d)-(solve(min(b,d),min(b,d))>>1),'\n');
}
return 0;
}

【刷题】HDU 1695 GCD的更多相关文章

  1. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

  2. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  3. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  4. HDU 1695 GCD#容斥原理

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  7. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

随机推荐

  1. CF 547 D. Mike and Fish

    D. Mike and Fish http://codeforces.com/contest/547/problem/D 题意: 给定平面上n个点,将这些点染成红或者蓝色,要求每行.每列红色点与蓝色点 ...

  2. Spring Boot:Caused by: org.apache.ibatis.binding.BindingException: Parameter 'deptId' not found.

    1. 错误信息描述 在使用Spring Boot + Mybaits从前台向后台提交数据时,控制台报出该错误信息 2. 报错原因 在dao接口中,该方法拥有两个参数,Mybaits无法区分这两个参数 ...

  3. Drupal views 学习之初识

    1. 简介 用过Yii框架的同学,应该都会用到过GridView和ListView组件.可以很方便的用网格或列表展示内容. 例如淘宝: 网格显示 列表显示 2. 使用view可以方便的配出类似上面的展 ...

  4. 试用一下markdown

    1 2 3 4 5 6 Blog

  5. python全栈开发-前方高能-生成器和生成器表达式

    python_day_13 今日主要内容1. 生成器和生成器函数生成器的本质就是迭代器生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换 生成器函数: 函数中 ...

  6. VirtualBox虚拟机上安装windows7系统

    1.下载Windows7的镜像文件 http://www.xitongcheng.com/jiaocheng/win7_article_24156.html 2.在虚拟机上安装Windows7 htt ...

  7. 二、Django快速安装

    一.安装Python 作为一个Python Web框架,Django依赖Python.从Django适用于哪些版本的Python可以获取更多信息.较新版本的Python内置一个轻量级的数据库SQLit ...

  8. 8 个用于业余项目的优秀 Python 库

    在 Python/Django 的世界里有这样一个谚语:为语言而来,为社区而留.对绝大多数人来说的确是这样的,但是,还有一件事情使得我们一直停留在 Python 的世界里,不愿离开,那就是我们可以很容 ...

  9. Python最简编码规范

    前言 本文是阅读<Python Coding Rule>之后总结的最为精华及简单的编码规范,根据每个人不同喜好有些地方会有不同的选择,我只是做了对自己来说最简单易行的选择,仅供大家参考. ...

  10. 武汉天喻信息 移动安全领域 SE(Secure Element)

    产品简介: SE(Secure Element)为安全模块,是一台微型计算机,通过安全芯片和芯片操作系统(COS)实现数据安全存储.加解密运算等功能.SE可封装成各种形式,常见的有智能卡和嵌入式安全模 ...