Portal -->poj2068

Description

​   给你\(S\)个石子,有\(2n\)个人分成两队,编号为奇数的一队,编号为偶数的一队,\(2n\)个人按照编号从小到大的顺序拿石子,所有人都拿过了就再从\(1\)号轮,编号为\(i\)的人一次可以拿\(x\in[1,a[i]]\)颗,拿到最后一颗石子的队伍输,判断当前局面是否先手必胜

Solution

​   emmm今天做了几道sg函数的题然后感觉这玩意很神秘

​​   除了转化成"有向图游戏"那样的形式之后用异或和和\(mex\)求\(sg\)以外,还有的题中\(sg\)的取值只有\(0\)和\(1\)两种,可以直接判断是否存在一个后继局面的\(sg\)值为\(0\)(也就是先手必败态),如果有就说明当前局面\(sg\)值为\(1\)(也就是先手必胜态),因为根据P-position(先败)和N-position(先胜)的定义,可以移动到P-position的局面是N-position,所以直接这么判就好了

​​   当然你也还是可以转成 一个有向图游戏,只要后继局面中有\(0\),那么取一下\(mex\)就只能是\(1\)了,一样的

​​   这题中比较容易想到的就是用"当前是谁准备取"和"当前还剩多少石子"来表示一个局面,那直接大力记忆化搜索就好了,边界条件就是如果当前没有石子了,那么是先手必胜态

​​   最后就是求\(nxt\)的时候模数记得是\(2n\)而不是\(n\)。。。

​   (一开始陷入了一个误区。。就是觉得每个人的取石子上限不同,所以不是一个ICG,但其实ICG中只是要求移动集合(在这题里也就是能移哪些石子)不与选手相关,并没有限制具体操作)

​  

​   代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=9000;
int f[60][N],a[60];
int vis[N];
int n,m,S,mark;
int nxt(int x){return (x+1)%(2*n)==0?2*n:(x+1)%(2*n);}
int sg(int x,int stone){
if (f[x][stone]!=-1) return f[x][stone];
if (stone==0) return f[x][stone]=1;
int tmp=nxt(x);
for (int i=1;i<=a[x]&&i<=stone;++i){
if (!sg(tmp,stone-i))
return f[x][stone]=1;
}
return f[x][stone]=0;
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
while (1){
scanf("%d",&n);
if (n==0) break;
memset(f,-1,sizeof(f));
scanf("%d",&S);
mark=0;
for (int i=1;i<=n*2;++i)scanf("%d",a+i);
printf("%d\n",sg(1,S));
}
}

【poj2068】Nim的更多相关文章

  1. 【HDU3032】Nim or not Nim?(博弈论)

    [HDU3032]Nim or not Nim?(博弈论) 题面 HDU 题解 \(Multi-SG\)模板题 #include<iostream> #include<cstdio& ...

  2. 【BZOJ2819】Nim 树状数组+LCA

    [BZOJ2819]Nim Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可 ...

  3. 洛谷 P2197 【模板】nim游戏 解题报告

    P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...

  4. 【bzoj2819】Nim

    Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游 ...

  5. 【bzoj2819】Nim DFS序+树状数组+倍增LCA

    题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...

  6. 【bzoj2819】 Nim

    www.lydsy.com/JudgeOnline/problem.php?id=2819 (题目链接) 题意 动态树上路径异或和. Solution Nim取石子游戏的sg值就是每堆石子的异或和,所 ...

  7. 【POJ】【2068】Nim

    博弈论/DP 这是Nim?这不是巴什博奕的变形吗…… 我也不会捉啊,不过一看最多只有20个人,每人最多拿16个石子,总共只有8196-1个石子,范围好像挺小的,嗯目测暴力可做. so,记忆化搜索直接水 ...

  8. 【POJ】【2975】Nim

    博弈论 我哭……思路错误WA了6次?(好像还有手抖点错……) 本题是要求Nim游戏的第一步必胜策略有几种. 一开始我想:先全部异或起来得到ans,从每个比ans大的堆里取走ans个即可,答案如此累计… ...

  9. 【BZOJ】【2819】NIM

    这题……咋说捏,其实是一道披着博弈论外衣的树上操作问题…… 随便用dfs序或者树链剖分转成序列,然后查询路径上的所有点的NIM和(异或和)就行了,毕竟除了是在树上以外,就是裸的NIM问题. 树链剖分: ...

随机推荐

  1. Jenkins Tomcat安装设置

    Jenkins Tomcat安装设置 以下为必须满足Jenkins Tomcat设置的先决条件. 第1步:验证安装Java 要验证Java安装,打开控制台并执行以下Java命令. OS 任务 命令 W ...

  2. 关于SQL 语句常用的一些查询收藏

    create database xuesheng go use xuesheng go /*学生表*/ create table Student ( S# ,) primary key, Sname ...

  3. Tim Cook在电话会议上宣布,Burberry前CEO Angela Ahrendts将在下周加入苹果

    在今天的第二季度财报电话会议上,苹果公司的 CEO Tim Cook 宣布 Burberry 的前 CEO Angela Ahrendts 将在下周入职苹果,出任苹果负责零售和网上商店的高级副总裁. ...

  4. JS - Promise使用详解--摘抄笔记

    第一部分: JS - Promise使用详解1(基本概念.使用优点) 一.promises相关概念 promises 的概念是由 CommonJS 小组的成员在 Promises/A 规范中提出来的. ...

  5. hbase 预分区

    转载 http://www.cnblogs.com/bdifn/p/3801737.html

  6. LeetCode 289. Game of Life (C++)

    题目: According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a ce ...

  7. 1.12Linux下软件安装(学习过程)

    实验介绍 介绍 Ubuntu 下软件安装的几种方式,及 apt,dpkg 工具的使用. 一.Linux 上的软件安装 通常 Linux 上的软件安装主要有三种方式: 在线安装 从磁盘安装deb软件包 ...

  8. RIGHT-BICEP测试第二次程序

    根据Right-BICEP单元测试的方法我对我写的第二次程序进行了测试: 测试一:测试能否控制使用乘除 测试二:测试是否能加括号 测试三:是否可以控制题目输出数量 测试四:能否控制输出方式,选择文件输 ...

  9. 关于虚拟机安装mac os 教程详解

    环境搭建 VMware下载 百度云盘下载:链接:http://pan.baidu.com/s/1pK8RcLl 密码:5jc5 Unlocker208 百度云盘下载:链接:http://pan.bai ...

  10. C#高级编程 (第六版) 学习 第二章:C#基础

    第二章 基础 1,helloworld示例: helloworld.cs using System; using System.Collections.Generic; using System.Li ...