题目大意:长城(视作x正半轴)有n处破损。有一个智能修复机器人,它的初始位置和移动速度已知。每处破损处都有一组参数(x,c,d),x表示位置,c、d表示在时间t后再修复该处破损的花费为d*t+c。求用一个机器人修复所有破损的最小花费。

题目分析:要想最终代价最低,就不能跳跃着修复,也就是经过一段时间后已经修复好的破损应是一段连续区间。定义dp(i,j,k)表示修好(i,j)后机器人停留在k(0表示在左端,1表示在右端)端的费用。修复某处破损的代价虽然不是定值,但却是随着时间线性增长的,所以当修复完一处或一段破损时,修复其他破损的费用可以算出来,只需将其累加到当前状态即可,也可以视作修复某处破损产生的时间代价。状态转移方程:dp(i,j,1)=min(dp(i,j-1,0)+w1,dp(i,j-1,1)+w2)  dp(i,j,0)=min(dp(i+1,j,0)+w3,dp(i+1,j,1)+w4) 其中,w1、w2、w3、w4为相应产生的时间代价与修复代价的和。

代码如下:

# include<iostream>
# include<cstdio>
# include<cmath>
# include<cstring>
# include<algorithm>
using namespace std; const int N=1005;
const double inf=1e30; struct P
{
int x,c,dlt;
bool operator < (const P &a) const{
return x<a.x;
}
};
P p[N];
int n,v,x;
double dp[N][N][2],s[N]; double dfs(int l,int r,int k)
{
if(dp[l][r][k]>-1.0) return dp[l][r][k];
if(l==r){
double t=fabs((double)x-(double)p[l].x)/(double)v;
dp[l][r][k]=s[n]*t+p[l].c;
return dp[l][r][k];
}
if(k==0){
double a=dfs(l+1,r,0);
double b=dfs(l+1,r,1);
double t1=(double)(p[l+1].x-p[l].x)/(double)v;
double t2=(double)(p[r].x-p[l].x)/(double)v;
double d=s[l]+s[n]-s[r];
dp[l][r][k]=min(a+d*t1,b+d*t2)+(double)p[l].c;
}else{
double a=dfs(l,r-1,0);
double b=dfs(l,r-1,1);
double t1=(double)(p[r].x-p[l].x)/(double)v;
double t2=(double)(p[r].x-p[r-1].x)/(double)v;
double d=s[l-1]+s[n]-s[r-1];
dp[l][r][k]=min(a+d*t1,b+d*t2)+p[r].c;
}
return dp[l][r][k];
} void look()
{
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j)
printf("%.lf ",dp[i][j][0]);
cout<<endl;
}
cout<<endl;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j)
printf("%.lf ",dp[i][j][1]);
cout<<endl;
}
} int main()
{
//freopen("UVA-1336 Fixing the Great Wall.txt","r",stdin);
while(~scanf("%d%d%d",&n,&v,&x))
{
if(n+v+x==0) break;
for(int i=1;i<=n;++i)
scanf("%d%d%d",&p[i].x,&p[i].c,&p[i].dlt);
sort(p+1,p+n+1);
s[0]=0.0;
for(int i=1;i<=n;++i) s[i]=s[i-1]+(double)p[i].dlt;
memset(dp,-1.0,sizeof(dp));
printf("%d\n",(int)min(dfs(1,n,0),dfs(1,n,1)));
//look();
}
return 0;
}

  

UVA-1336 Fixing the Great Wall(区间DP)的更多相关文章

  1. UVa 1336 Fixing the Great Wall (区间DP)

    题意:给定 n 个结点,表示要修复的点,然后机器人每秒以 v 的速度移动,初始位置在 x,然后修复结点时不花费时间,但是如果有的结点暂时没修复, 那么每秒它的费用都会增加 d,修复要花费 c,坐标是 ...

  2. 【暑假】[深入动态规划]UVa 10618 Fixing the Great Wall

    UVa 10618 Fixing the Great Wall 题目:  http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=361 ...

  3. UVA 10529 - Dumb Bones(概率+区间dp)

    UVA 10529 - Dumb Bones option=com_onlinejudge&Itemid=8&category=518&page=show_problem&am ...

  4. uva 10304 - Optimal Binary Search Tree 区间dp

    题目链接 给n个数, 这n个数的值是从小到大的, 给出个n个数的出现次数. 然后用他们组成一个bst.访问每一个数的代价是这个点的深度*这个点访问的次数. 问你代价最小值是多少. 区间dp的时候, 如 ...

  5. UVA 10891 Game of Sum(区间DP(记忆化搜索))

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  6. uva 10453 【回文串区间dp】

    Uva 10453 题意:给定字符串,问最少插入多少个字符使其变成回文串,并任意输出一种结果. 题解:和Uva 10739类似,这里是只能增加.类似定义dp[i][j]表示子串Si...Sj变为回文串 ...

  7. UVA - 10891 Game of Sum (区间dp)

    题意:AB两人分别拿一列n个数字,只能从左端或右端拿,不能同时从两端拿,可拿一个或多个,问在两人尽可能多拿的情况下,A最多比B多拿多少. 分析: 1.枚举先手拿的分界线,要么从左端拿,要么从右端拿,比 ...

  8. UVA 1626 区间dp、打印路径

    uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...

  9. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

随机推荐

  1. AttributeError: 'module' object has no attribute 'face'

    报错 raceback (most recent call last): File "D:/work/python/face_ai/predict.py", line 41, in ...

  2. Nginx正向代理配置

    服务器端: server { resolver 8.8.8.8; resolver_timeout 5s; listen 0.0.0.0:8888; access_log /usr/local/ngi ...

  3. 苹果推送通知服务APNs编程(转)

    add by zhj: 下面的几篇文章也非常好, http://www.raywenderlich.com/32960/apple-push-notification-services-in-ios- ...

  4. LVM的一些问题汇总 tune2fs命令

    LVM的一些问题汇总  tune2fs命令 --http://www.aminglinux.com/bbs/forum.php?mod=viewthread&tid=7664&page ...

  5. 团队作业5-测试与发布(alpha阶段)

    团队作业5-测试与发布(alpha阶段) 一.测试 请根据团队项目中软件的需求文档.功能说明.系统设计和测试计划,写出软件的测试过程和测试结果,并回答下述问题. 1. 在测试过程中总共发现了多少Bug ...

  6. NiFi REST API 的使用

    一.概述 为方便用户使用 NiFi 进行二次开发,NiFi 为开发者提供了 NIFI REST API. 关于 API 的详细介绍,请参见官网 NIFI REST API.这里仅给出一些注意的小细节. ...

  7. VS2010/MFC编程入门之十七(对话框:文件对话框)

    上一讲鸡啄米介绍的是消息对话框,本节讲解文件对话框.文件对话框也是很常用的一类对话框. 文件对话框的分类       文件对话框分为打开文件对话框和保存文件对话框,相信大家在Windows系统中经常见 ...

  8. 字王·国标二级字库汉字GB内码un码三合一对照表2016版

    国标二级字库汉字GB内码un码三合一对照表 字王2016版 汉字内码表,是制作字库的基础,简单.便利的版本很少,根据实战经验,特此制作这个三合一版本的汉字.GB内码.Unicode码对照表: l 提供 ...

  9. js正则表达式的使用详解

    本文转自:http://www.jb51.net/article/39623.htm 1定义正则表达式2关于验证的三个这则表达式方法3正则表达式式的转义字符 1定义正则表达式在js中定义正则表达式很简 ...

  10. FCKeditor配置与使用

    fckeditor - (1)资料介绍与安装 fckeditor介绍  FCKeditor是一个专门使用在网页上属于开放源代码的所见即所得文字编辑器.  1.fckeditor官网:http://ww ...