题面

luogu

Sol

首先设一个 \(0\) 号点,向所有点连边,表示初始价值

显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值

再买就一定能优惠(包含 \(0\) 的边)

有向图最小生成树???

朱刘算法

其实正确性不会理论。。

可以说是一个不断调整的过程,从而得到最优解

时间复杂度 \(O(VE)\)

流程:

1.去掉自环

2.先给每个点选择一条最小的入边,并记录连过来的点

3.如果此时有点没有入边(除根以外),那么显然无解

4.算上每个点入边贡献,加入答案

5.如果没有有向环,那么做完结束

6.如果有,缩点,并且把连出去的边都减去连出去那个点的入边,因为贡献算过了

7.存储新图,对新图重复所有操作

Code

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; const int maxn(100005);
const double inf(1e9); int n, tot, m, cnt, need[maxn], pre[maxn], vis[maxn], id[maxn];
double ans, cost[maxn], prize, inw[maxn]; struct Edge{
int u, v;
double w;
} e[maxn]; IL void DirectedMST(){
RG int num = n, rt = 1, idx;
while(true){
// 初始化
for(RG int i = 1; i <= num; ++i) id[i] = vis[i] = pre[i] = -1, inw[i] = inf;
// 选入边
for(RG int i = 1; i <= cnt; ++i)
if(inw[e[i].v] > e[i].w && e[i].u != e[i].v) inw[e[i].v] = e[i].w, pre[e[i].v] = e[i].u;
pre[rt] = rt, idx = inw[rt] = 0;
// 缩环,统计贡献
for(RG int i = 1; i <= num; ++i){
ans += inw[i];
if(vis[i] == -1){
RG int nw = i;
while(vis[nw] == -1) vis[nw] = i, nw = pre[nw];
if(vis[nw] == i && nw != rt){
id[nw] = ++idx;
for(RG int j = pre[nw]; j != nw; j = pre[j]) id[j] = idx;
}
}
}
// 没有环结束
if(!idx) return;
// 重标号,记录新图
for(RG int i = 1; i <= num; ++i) if(id[i] == -1) id[i] = ++idx;
for(RG int i = 1; i <= cnt; ++i)
e[i].w -= inw[e[i].v], e[i].u = id[e[i].u], e[i].v = id[e[i].v];
num = idx, rt = id[rt];
}
} int main(){
scanf("%d", &tot), n = 2;
for(RG int i = 1; i <= tot; ++i){
scanf("%lf%d", &cost[n], &need[n]);
if(need[n]) e[++cnt] = (Edge){1, n, cost[n]}, vis[i] = n++;
}
--n, scanf("%d", &m);
for(RG int i = 1, a, b; i <= m; ++i){
scanf("%d%d%lf", &a, &b, &prize);
a = vis[a], b = vis[b];
if(a && b){
cost[b] = min(cost[b], prize);
e[++cnt] = (Edge){a, b, prize};
}
}
for(RG int i = 2; i <= n; ++i) ans += (need[i] - 1) * cost[i];
DirectedMST();
printf("%.2lf\n", ans);
return 0;
}

最小树形图--朱刘算法([JSOI2008]小店购物)的更多相关文章

  1. 最小树形图——朱刘算法(Edmonds)

    定义:一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 朱刘算法实现过程: [在选出入边集后(看步骤1),若有向图中不存在有向环,说明该图就是最小树形图] 1,选入 ...

  2. POJ 3164 Command Network 最小树形图 朱刘算法

    =============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...

  3. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

  4. poj3164(最小树形图&朱刘算法模板)

    题目链接:http://poj.org/problem?id=3164 题意:第一行为n, m,接下来n行为n个点的二维坐标, 再接下来m行每行输入两个数u, v,表点u到点v是单向可达的,求这个有向 ...

  5. 洛谷P4716 【模板】最小树形图(朱刘算法)

    题意 题目链接 Sol 朱刘算法?感觉又是一种神仙贪心算法 大概就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就缩起来找其他的边 不详细说了,丢链接走人.. #include<bit ...

  6. POJ - 3164-Command Network 最小树形图——朱刘算法

    POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...

  7. bzoj 4349 最小树形图——朱刘算法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4349. 学习博客:http://www.cnblogs.com/xzxl/p/7243466 ...

  8. Luogu2792 [JSOI2008]小店购物

    Luogu2792 [JSOI2008]小店购物 重题 bzoj4349 最小树形图 有 \(n\) 个物品,每个物品有价格 \(c_i\) 和所需个数 \(k_i\) ,所有物品必须恰好买 \(k_ ...

  9. 【LuoguP2792 】[JSOI2008]小店购物(最小树形图)

    题目链接 题目描述 小店的优惠方案十分简单有趣: 一次消费过程中,如您在本店购买了精制油的话,您购买香皂时就可以享受2.00元/块的优惠价:如果您在本店购买了香皂的话,您购买可乐时就可以享受1.50元 ...

随机推荐

  1. 代码 | 自适应大邻域搜索系列之(3) - Destroy和Repair方法代码实现解析

    前言 上一篇文章中我们具体解剖了ALNS类的具体代码实现过程,不过也留下了很多大坑.接下来的文章基本都是"填坑"了,把各个模块一一展现解析给大家.不过碍于文章篇幅等原因呢,也不会每 ...

  2. ubuntu apt update时W: GPG error http://ppa.launchpad.net lucid Release没有公钥无法验证NO_PUBKEY签名问题解决

    在安装更新时,即在运行命令行sudo apt-get update 或者运行更新管理器的时候,出现W: GPG 错误: W: GPG error: http://ppa.launchpad.net/o ...

  3. Mac下安装Fiddler抓包工具(别试了,会报错,没办法使用)

    下载: https://www.telerik.com/download/fiddler 离线版本:(链接: https://pan.baidu.com/s/1hr7f8QK 密码: ukg2) 安装 ...

  4. Mac下一台电脑管理多个SSH KEY(转)

    一.关于ssh是什么? http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html 二.需求: 一台电脑上(Mac os)管理多个ssh ...

  5. tomcat无法登录

    最近开始学JEE,在配置环境时,使用了tomcat 7.x的版本,然而点击manager app时无法登录. 按照网络上的教程(如:http://www.oschina.net/question/19 ...

  6. io流之节点流inputstream、outputstream、reader、writer

    例子程序:读取工作空间下 package io; import java.io.*; public class TestFileInputStream { public static void mai ...

  7. 使用EditPlus编辑Linux上的文本文件

    在Linux上我们都使用vim 或者vi命令对文件进行编辑,但是我们习惯的一般都是windows系统, 那么怎么才能像在windows上一样编辑我们Linux上的文件呢?下面我们就来看看如何使用 wi ...

  8. H5+百度地图定位

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Debugging Ruby in VS Code

    原文  https://dev.to/dnamsons/ruby-debugging-in-vscode-3bkj https://github.com/Microsoft/vscode-recipe ...

  10. PHP之string之str_split()函数使用

    str_split (PHP 5, PHP 7) str_split - Convert a string to an array str_split - 将字符串转换为数组 Description ...