对每个权值分别考虑。则只有单点加路径求和的操作。树上差分转化为求到根的路径和,子树加即可。再差分后bit即可。注意树上差分中根的父亲是0,已经忘了是第几次因为这个挂了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],p[N],dfn[N],size[N],deep[N],fa[N][],tree[N],ans[N*],t,cnt;
struct data{int to,nxt;
}edge[N<<];
struct data2
{
int op,i,j,x,id;
bool operator <(const data2&a) const
{
return x<a.x||x==a.x&&id<a.id;
}
}q[N*];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
dfn[k]=++cnt,size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k][])
{
deep[edge[i].to]=deep[k]+;
fa[edge[i].to][]=k;
dfs(edge[i].to);
size[k]+=size[edge[i].to];
}
}
void add(int k,int x){while (k<=n) tree[k]+=x,k+=k&-k;}
int query(int k) {int s=;while (k) s+=tree[k],k-=k&-k;return s;}
int lca(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
for (int j=;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j];
if (x==y) return x;
for (int j=;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
return fa[x][];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4999.in","r",stdin);
freopen("bzoj4999.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
fa[][]=;dfs();
for (int j=;j<;j++)
for (int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
int x=;
for (int i=;i<=n;i++) x++,q[x].op=,q[x].i=i,q[x].j=,q[x].x=a[i],q[x].id=x;
for (int i=;i<=m;i++)
{
char c=getc();
if (c=='C')
{
x++,q[x].op=,q[x].i=read(),q[x].j=,q[x].x=read(),q[x].id=x;
x++,q[x].op=,q[x].i=q[x-].i,q[x].j=-,q[x].x=a[q[x].i],q[x].id=x;
a[q[x].i]=q[x-].x;
}
else x++,q[x].op=,q[x].i=read(),q[x].j=read(),q[x].x=read(),q[x].id=x;
}
m=x;
sort(q+,q+m+);memset(ans,,sizeof(ans));
for (int i=;i<=m;i++)
{
int t=i;
while (t<m&&q[t+].x==q[i].x) t++;
for (int j=i;j<=t;j++)
if (q[j].op)
{
int l=lca(q[j].i,q[j].j);
ans[q[j].id]=query(dfn[q[j].i])+query(dfn[q[j].j])-query(dfn[l])-query(dfn[l==?:fa[l][]]);
}
else add(dfn[q[j].i],q[j].j),add(dfn[q[j].i]+size[q[j].i],-q[j].j);
for (int j=i;j<=t;j++)
if (q[j].op==) add(dfn[q[j].i],-q[j].j),add(dfn[q[j].i]+size[q[j].i],q[j].j);
i=t;
}
for (int i=;i<=m;i++) if (ans[i]>=) printf("%d\n",ans[i]);
return ;
}

BZOJ4999 This Problem Is Too Simple!(树上差分+dfs序+树状数组)的更多相关文章

  1. 【bzoj3779】重组病毒 LCT+树上倍增+DFS序+树状数组区间修改区间查询

    题目描述 给出一棵n个节点的树,每一个节点开始有一个互不相同的颜色,初始根节点为1. 定义一次感染为:将指定的一个节点到根的链上的所有节点染成一种新的颜色,代价为这条链上不同颜色的数目. 现有m次操作 ...

  2. 【BZOJ 4034】[HAOI2015]树上操作 差分+dfs序+树状数组

    我们只要看出来这道题 数组表示的含义就是 某个点到根节点路径权值和就行 那么我们可以把最终答案 看做 k*x+b x就是其深度 ,我们发现dfs序之后,修改一个点是差分一个区间,修改一个点的子树,可以 ...

  3. 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)

    题目: Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There ar ...

  4. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  5. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  6. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  7. FZU 2176 easy problem (DFS序+树状数组)

    对于一颗树,dfs遍历为每个节点标号,在进入一个树是标号和在遍历完这个树的子树后标号,那么子树所有的标号都在这两个数之间,是一个连续的区间.(好神奇~~~) 这样每次操作一个结点的子树时,在每个点的开 ...

  8. [POI2007]MEG-Megalopolis 树的dfs序+树状数组维护差分 BZOJ1103

    题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postman, who onc ...

  9. 【bzoj4009】[HNOI2015]接水果 DFS序+树上倍增+整体二分+树状数组

    题目描述 给出一棵n个点的树,给定m条路径,每条路径有一个权值.q次询问求一个路径包含的所有给定路径中权值第k小的. 输入 第一行三个数 n和P 和Q,表示树的大小和盘子的个数和水果的个数. 接下来n ...

随机推荐

  1. WPF 一个简单的颜色选择器

    原文:WPF 一个简单的颜色选择器 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/BYH371256/article/details/8340999 ...

  2. 【原创】Odoo开发文档学习之:ORM API接口(ORM API)(边Google翻译边学习)

    官方ORM API开发文档:https://www.odoo.com/documentation/10.0/reference/orm.html Recordsets(记录集) New in vers ...

  3. 1127: [POI2008]KUP

    1127: [POI2008]KUP https://lydsy.com/JudgeOnline/problem.php?id=1127 分析: 如果存在一个点大于等于k,小于等于2k的话,直接输出. ...

  4. 使用装饰器@property

    1.在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 98s.score = 1000 # 属性 ...

  5. MSP430的JTAG接口和BSW接口

    1.JTAG口,JTAG引脚如下定义:  单片机TCK——测试时钟输入,接仿真器7脚  单片机TDI——测试数据输入,接仿真器2脚  单片机TDO——测试数据输出,接仿真器1脚  单片机TMS——测试 ...

  6. SOAPUI参数中xml中CDATA包含问题

    <![CDATA[ <Request> <CardNo>000002629518</CardNo> <SecrityNo/> <BankTr ...

  7. C# 调用C++ dll 返回char*调用方式(StringBuilder乱码)

    // CDLLDemo.cpp : 定义 DLL 应用程序的导出函数. // #include "stdafx.h" #include "string.h" # ...

  8. equals和==方法比较(二)--Long中equals源码分析

    接上篇,分析equals方法在Long包装类中的重写,其他类及我们自定义的类,同样可以根据需要重新equals方法. equals方法定义 equals方法是Object类中的方法,java中所有的对 ...

  9. linux菜鸟笔记

    linux目录的子目录复制 cp -r 要复制的目录+新的目录 cp -r a test 意思就是将a的子目录及文件复制到新的目录test下面 zt@ubuntu:~/Desktop$ mkdir - ...

  10. Oracle的集合运算符

    Oracle的集合运算符有并集union.union all,交集intersect,差集minus 先建表myemp,进行集合运算的测试 create table myemp as select * ...