题目描述

有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次。如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值。
给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵。

输入

输入第一行包含两个整数n和m(1<=n<=4, 1<=m<=7),即行数和列数。以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值。

输出

输出仅一行,为可能的矩阵总数除以12345678的余数。

样例输入

3 2
X.
..
.X

样例输出

60


题解

容斥原理+状压dp

“给出所有局部极小值的位置” 有两层含义:
1.给出的位置是局部最小值;
2.非给出的位置不是局部最小值。

先考虑第一层含义怎么做:

我们把数从小到大填入矩阵中,那么如果一个格子是局部最小值且没有填入数,那么它周围的数都不能填。除此之外的位置均可选择。

因此设 $f[i][j]$ 表示填入前 $i$ 个数,局部最小值的填入情况为 $j$ 的方案数。

那么对于 $f[i][j]$ ,有两种转移:
不填局部最小值的位置,那么 $f[i][j]=f[i-1][j]+可以填的位置数$ 。我们预处理每种局部最小值填入情况下可以填入多少个数 $v[j]$,之后就能算出可以填的位置数 $v[j]-i+1$ 。
填局部最小值的位置,那么枚举填入了第 $k$ 个局部最小值,有 $f[i][j]=f[i-1][j-2^k]$ 。

最终 $f[nm][2^{局部最小值个数}-1]$ 即为答案。

再考虑第二层含义:

考虑容斥,那么讨论其它位置为局部最小值的情况,同样的方法进行dp,乘以容斥系数 $(-1)^{多填的位置数}$ 累计到答案中即可。

注意判断无解的情况。

由于容斥过程时刻要求一个局部最小值的八连通位置不能存在局部最小值,因此状态数是很小的。

时间复杂度 $O(跑得飞快)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 12345678
using namespace std;
const int dx[] = {0 , 1 , 1 , 1 , 0 , -1 , -1 , -1 , 0} , dy[] = {0 , 1 , 0 , -1 , -1 , -1 , 0 , 1 , 1};
char str[10];
int n , m , px[30] , py[30] , p , vis[6][10] , filled[6][10] , v[260] , f[30][260];
int solve()
{
int i , j , k;
memset(v , 0 , sizeof(v));
for(i = 0 ; i < (1 << p) ; i ++ )
{
memset(vis , 0 , sizeof(vis));
for(j = 0 ; j < p ; j ++ )
if(!(i & (1 << j)))
for(k = 0 ; k < 9 ; k ++ )
vis[px[j] + dx[k]][py[j] + dy[k]] = 1;
for(j = 1 ; j <= n ; j ++ )
for(k = 1 ; k <= m ; k ++ )
v[i] += !vis[j][k];
}
memset(f , 0 , sizeof(f));
f[0][0] = 1;
for(i = 1 ; i <= n * m ; i ++ )
{
for(j = 0 ; j < (1 << p) ; j ++ )
{
if(v[j] >= i) f[i][j] = f[i - 1][j] * (v[j] - i + 1) % mod;
for(k = 0 ; k < p ; k ++ )
if(j & (1 << k))
f[i][j] = (f[i][j] + f[i - 1][j ^ (1 << k)]) % mod;
}
}
return f[n * m][(1 << p) - 1];
}
int dfs(int x , int y)
{
if(y > m) x ++ , y = 1;
if(x > n) return solve();
int i , ans = dfs(x , y + 1);
for(i = 0 ; i < 9 ; i ++ )
if(filled[x + dx[i]][y + dy[i]])
break;
if(i == 9)
{
px[p] = x , py[p ++ ] = y , filled[x][y] = 1;
ans = (ans - dfs(x , y + 1) + mod) % mod;
p -- , filled[x][y] = 0;
}
return ans;
}
int main()
{
int i , j;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= m ; j ++ )
if(str[j] == 'X')
px[p] = i , py[p ++ ] = j;
}
for(i = 0 ; i < p ; i ++ )
{
for(j = 0 ; j < i ; j ++ )
{
if(abs(px[i] - px[j]) <= 1 && abs(py[i] - py[j]) <= 1)
{
puts("0");
return 0;
}
}
filled[px[i]][py[i]] = 1;
}
printf("%d\n" , dfs(1 , 1));
return 0;
}

【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp的更多相关文章

  1. 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 667  Solved: 350 Description 有一 ...

  2. HDU 4336 容斥原理 || 状压DP

    状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示 ...

  3. #186 path(容斥原理+状压dp+NTT)

    首先只有一份图时显然可以状压dp,即f[S][i]表示S子集的哈密顿路以i为终点的方案数,枚举下个点转移. 考虑容斥,我们枚举至少有多少条原图中存在的边(即不合法边)被选进了哈密顿路,统计出这个情况下 ...

  4. [LuoguP2167][SDOI2009]Bill的挑战_容斥原理/状压dp

    Bill的挑战 题目链接:https://www.luogu.org/problem/P2167 数据范围:略. 题解: 因为$k$特别小,想到状压. 状压的方式也非常简单,就是暴力枚举. 但是会不会 ...

  5. bzoj 3812: 主旋律 [容斥原理 状压DP]

    3812: 主旋律 题意:一张有向图,求它的生成子图是强连通图的个数.\(n \le 15\) 先说一个比较暴力的做法. 终于知道n个点图的是DAG的生成子图个数怎么求了. 暴力枚举哪些点是一个scc ...

  6. BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...

  7. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  8. 洛谷$P$3160 局部极小值 $[CQOI2012]$ 状压$dp$

    正解:状压$dp$ 解题报告: 传送门! 什么神仙题昂,,,反正我是没有想到$dp$的呢$kk$,,,还是太菜了$QAQ$ 首先看数据范围,一个4×7的方格,不难想到最多有8个局部极小值,过于显然懒得 ...

  9. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

随机推荐

  1. 20145226夏艺华 《Java程序设计》第10周学习总结

    教材学习内容总结 学习目标 了解计算机网络基础 掌握Java Socket编程 网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者 ...

  2. 什么是thinkphp

    ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时,尤其注重开发体验 ...

  3. 新技能get,使用PHPStorm的deployment工具

    1. 工具栏 Tools - Deployment - Configuration 2. 添加一个服务端的配置信息 type 类型可以选择:FTP.local等. 填完信息别忘了点"Test ...

  4. Sqlite数据多表联合update

    其实在Mysql中,多表联合update不是什么难事. 语法: 1 UPDATE table_references SET col_name1=expr1 [, col_name2=expr2 ... ...

  5. PHP:Iterator(迭代器)接口和生成器

    迭代器 可在内部迭代自己的外部迭代器或类的接口.详情:http://php.net/manual/zh/class.iterator.php 接口摘要 Iterator extends Travers ...

  6. CentOS 下 MySQL 5.6 基于 RPM 的下载、安装、配置

    CentOS 下 MySQL 5.6 基于 RPM 的下载.安装.配置 系统: CentOS 7 x86_64 MySQL 版本: 5.6.40 安装方式: RPM 下载 下载地址 操作系统 选择 R ...

  7. MYSQL存储过程调试过程

     mysql不像oracle有plsqldevelper工具用来调试存储过程,所以有几种简单的方式追踪执行过程: 1.用一张临时表,记录调试过程: 2.直接在存储过程中,增加select xxx,在控 ...

  8. 【python 3.6】调用另一个文件的类的方法

    文件1:test12.py 文件2:test13.py 文件1 如下: #!/usr/bin/python # -*- coding: utf-8 -*- ''' ''' class abcd(obj ...

  9. 【python 3.6】笨办法取出列表中的字典的value

    #python 3.6 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'BH8ANK' x = {'RegionSet': [{' ...

  10. Python科学计算库灬numpy

    Numpy NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.Numpy许多底层函数实际上是用C编写的,因此它的矩阵向量计算速度是原生Python中无法比拟的. numpy属性 维 ...