既然已经学傻了,这个题当然是上反演辣。

  对于求积的式子,考虑把[gcd=1]放到指数上。一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D)。

  冷静分析一下,由μ*1=e,后面一串ij相关的式子仅当D=1时有贡献。这一部分就非常好算了。而d对某个D的贡献,容易发现是d2μ(d)*(n/D)^2。设f(D)=∏dμ(d) (d|D),这个式子是可以线性筛的。(事实上从莫比乌斯函数的性质上看好像也很可以求,然而已经不会了)筛完之后就可以愉快的整除分块了。

  于是我们最后得到了一个不需要莫比乌斯函数的式子。复杂度O(n+t√nlogn)。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 19260817
#define N 1000010
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int T,n,fac[N],g[N],h[N],prime[N],cnt;
bool flag[N];
int ksm(int a,int k)
{
if (k<) k=1ll*(P-)*(-k)%(P-);
k%=(P-);
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%lld\n";
#else
const char LL[]="%I64d\n";
#endif
T=read();
fac[]=;for (int i=;i<=;i++) fac[i]=1ll*fac[i-]*i%P;
for (int i=;i<=;i++) fac[i]=ksm(fac[i],i);
flag[]=;g[]=g[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,g[i]=ksm(i,-);
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {g[prime[j]*i]=g[i];break; }
g[prime[j]*i]=;
}
}
for (int i=;i<=N-;i++) g[i]=1ll*g[i]*g[i-]%P;
while (T--)
{
int n=read(),ans=1ll*fac[n]*fac[n]%P;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
ans=1ll*ans*ksm(1ll*g[t]*ksm(g[i-],-)%P,2ll*(n/i)*(n/i)%(P-))%P;
i=t;
}
cout<<ans<<endl;
}
return ;
}

Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)的更多相关文章

  1. [ Luogu 4917 ] 天守阁的地板

    \(\\\) \(Description\) 定义二元函数\(F(x,y)\)表示,用 \(x\times y\) 的矩形不可旋转的铺成一个任意边长的正方形,所需要的最少的矩形个数. 现在\(T\)组 ...

  2. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  3. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  4. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  5. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  6. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  7. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  8. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  9. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

随机推荐

  1. bzoj1861 书架

    bzoj1861 书架 原题链接 神题... 先吐槽洛谷的样例 10 10 1 3 2 7 5 8 10 4 9 6 Query 3 Top 5 Ask 6 Bottom 3 Ask 3 Top 6 ...

  2. Swing 解决 idea 找不到创建gui form的问题

    果然,寄希望于百度google不如自己动手,还是得吃透文档, 然后就是对于别人的博客要严格对照步骤来,否则都容易达不到效果 这边gui form在idea下找不到创建,百度google一个说的也没有, ...

  3. Spring Cloud搭建微服务架构----文章汇总

    Spring Cloud搭建微服务架构----前言 原文地址:https://my.oschina.net/u/1000241/blog/882929 Spring Cloud搭建微服务架构----使 ...

  4. Javascript格式化并高亮xml字符串

    Javascript格式化并高亮xml字符串 两个关键点 使用DOMParser解析xml 递归遍历xml树,按格式输出每一个节点 关于使用DOMParser 此方法目前在IE9以上和其它浏览器里都是 ...

  5. 利用PreparedStatement预防SQL注入

    1.什么是sql注入 SQL 注入是用户利用某些系统没有对输入数据进行充分的检查,从而进行恶意破坏的行为. 例如登录用户名采用  ' or 1=1 or username=‘,后台数据查询语句就变成 ...

  6. Bellman-ford 模板

    #include<bits/stdc++.h> const int inf=0x3f3f3f3f; ; struct edge{ int u,v;//两个点 int w; //权值 Edg ...

  7. Delphi 实现照片抽奖-原创

    有单位年会要用照片抽奖,上网搜了几个都不满意,且居然还要收费.自己写一个算了.只是有一点不爽,Delphi 7 在 Windows 7 64位下有问题,不能双击 dpr 文件直接打开项目! 关于性能: ...

  8. Laxcus大数据操作系统2.0(5)- 第二章 数据组织

    第二章 数据组织 在数据的组织结构设计上,Laxcus严格遵循数据和数据描述分离的原则,这个理念与关系数据库完全一致.在此基础上,为了保证大规模数据存取和计算的需要,我们设计了大量新的数据处理技术.同 ...

  9. react native基础与入门

    react native基础与入门 一.react native 的优点 1.跨平台(一才两用) 2.低投入高回报 (开发成本低.代码复用率高) 3.性能高:拥有独立的js渲染引擎,比传统的h5+ w ...

  10. 第八次作业psp

    psp 进度条 代码累积折线图 博文累积折线图 psp饼状图