以字段为中心的查询(Field-centric Queries)

上述提到的三个问题都来源于most_fields是以字段为中心(Field-centric),而不是以词条为中心(Term-centric):它会查询最多匹配的字段(Most matching fields),而我们真正感兴趣的最匹配的词条(Most matching terms)。

NOTE

best_fields同样是以字段为中心的,因此它也存在相似的问题。

首先我们来看看为什么存在这些问题,以及如何解决它们。

问题1:在多个字段中匹配相同的单词

考虑一下most_fields查询是如何执行的:ES会为每个字段生成一个match查询,让后将它们包含在一个bool查询中。

我们可以将查询传入到validate-query API中进行查看:

GET /_validate/query?explain
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}

它会产生下面的解释(explaination):

(street:poland street:street street:w1v) (city:poland city:street city:w1v) (country:poland country:street country:w1v) (postcode:poland postcode:street postcode:w1v)

你可以发现能够在两个字段中匹配poland的文档会比在一个字段中匹配了poland和street的文档的分值要高。

问题2:减少长尾

精度控制(Controlling Precision)一节中,我们讨论了如何使用and操作符和minimum_should_match参数来减少相关度低的文档数量:

{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"operator": "and",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}

但是,使用best_fields或者most_fields,这些参数会被传递到生成的match查询中。该查询的解释如下(译注:通过validate-query API):

(+street:poland +street:street +street:w1v) (+city:poland +city:street +city:w1v) (+country:poland +country:street +country:w1v) (+postcode:poland +postcode:street +postcode:w1v)

换言之,使用and操作符时,所有的单词都需要出现在相同的字段中,这显然是错的!这样做可能不会有任何匹配的文档。

问题3:词条频度

什么是相关度(What is Relevance)一节中,我们解释了默认用来计算每个词条的相关度分值的相似度算法TF/IDF:

词条频度(Term Frequency)

在一份文档中,一个词条在一个字段中出现的越频繁,文档的相关度就越高。

倒排文档频度(Inverse Document Frequency)

一个词条在索引的所有文档的字段中出现的越频繁,词条的相关度就越低。

当通过多字段进行搜索时,TF/IDF会产生一些令人惊讶的结果。

考虑使用first_name和last_name字段搜索"Peter Smith"的例子。Peter是一个常见的名字,Smith是一个常见的姓氏 - 它们的IDF都较低。但是如果在索引中有另外一个名为Smith Williams的人呢?Smith作为名字是非常罕见的,因此它的IDF值会很高!

像下面这样的一个简单查询会将Smith Williams放在Peter Smith前面(译注:含有Smith Williams的文档分值比含有Peter Smith的文档分值高),尽管Peter Smith明显是更好的匹配:

{
"query": {
"multi_match": {
"query": "Peter Smith",
"type": "most_fields",
"fields": [ "*_name" ]
}
}
}

smith在first_name字段中的高IDF值会压倒peter在first_name字段和smith在last_name字段中的两个低IDF值。

解决方案

这个问题仅在我们处理多字段时存在。如果我们将所有这些字段合并到一个字段中,该问题就不复存在了。我们可以向person文档中添加一个full_name字段来实现:

{
"first_name": "Peter",
"last_name": "Smith",
"full_name": "Peter Smith"
}

当我们只查询full_name字段时:

  • 拥有更多匹配单词的文档会胜过那些重复出现一个单词的文档。
  • minimum_should_match和operator参数能够正常工作。
  • first_name和last_name的倒排文档频度会被合并,因此smith无论是first_name还是last_name都不再重要。

尽管这种方法能工作,可是我们并不想存储冗余数据。因此,ES为我们提供了两个解决方案 - 一个在索引期间,一个在搜索期间。下一节对它们进行讨论。

[Elasticsearch] 多字段搜索 (五) - 以字段为中心的查询的更多相关文章

  1. [Elasticsearch] 多字段搜索 (二) - 最佳字段查询及其调优

    最佳字段(Best Fields) 假设我们有一个让用户搜索博客文章的网站,就像这两份文档一样: PUT /my_index/my_type/1 { "title": " ...

  2. [Elasticsearch] 多字段搜索 (二) - 最佳字段查询及其调优(转)

    最佳字段(Best Fields) 假设我们有一个让用户搜索博客文章的网站,就像这两份文档一样: PUT /my_index/my_type/1 { "title": " ...

  3. [Elasticsearch2.x] 多字段搜索 (二) - 最佳字段查询及其调优 <译>

    最佳字段(Best Fields) 假设我们有一个让用户搜索博客文章的网站,就像这两份文档一样: PUT /my_index/my_type/ { "title": "Q ...

  4. Elasticsearch通关教程(五):如何通过SQL查询Elasticsearch

    前言 这篇博文本来是想放在全系列的大概第五.六篇的时候再讲的,毕竟查询是在索引创建.索引文档数据生成和一些基本概念介绍完之后才需要的.当前面的一些知识概念全都讲解完之后再讲解查询是最好的,但是最近公司 ...

  5. Elasticsearch系列---初识搜索

    概要 本篇主要介绍搜索的报文结构含义.搜索超时时间的处理过程,提及了一下多索引搜索和轻量搜索,最后将精确搜索与全文搜索做了简单的对比. 空搜索 搜索API最简单的形式是不指定索引和类型的空搜索,它将返 ...

  6. ElasticSearch 2 (15) - 深入搜索系列之多字段搜索

    ElasticSearch 2 (15) - 深入搜索系列之多字段搜索 摘要 查询很少是简单的一句话匹配(one-clause match)查询.很多时候,我们需要用相同或不同的字符串查询1个或多个字 ...

  7. Elasticsearch 多字段搜索

    查询很少是对一个字段做 match 查询,通常都是一个 query 查询多个字段,比如一个 doc 有 title.content.pagetag 等文本字段,要在这些字段查询含多个 term 的 q ...

  8. [Elasticsearch] 多字段搜索 (三) - multi_match查询和多数字段 <译>

    multi_match查询 multi_match查询提供了一个简便的方法用来对多个字段执行相同的查询. NOTE 存在几种类型的multi_match查询,其中的3种正好和在“了解你的数据”一节中提 ...

  9. elasticsearch多字段搜索

    https://blog.csdn.net/Ricky110/article/details/78888711 多字段搜索多字符串查询boost 参数 “最佳” 值,较为简单的方式就是不断试错,比较合 ...

随机推荐

  1. C++继承和派生练习(一)--关于从people(人员)类派生出student(学生)类等

    . 从people(人员)类派生出student(学生)类 添加属性:班号char classNO[]:从people类派生出teacher(教师)类, 添加属性:职务char principalsh ...

  2. 【模板】概率dp

    有n个投资事件,和一个成功概率最低接受值rate.每个投资的价值是c[i],成功概率是p[i](浮点数). 在保证成功概率≥rate的情况下,使价值最大化. #include<bits/stdc ...

  3. oracle12c管理作业资源的一种方式

    数据库:12.1.0.2,rac,cdb模式 笔者负责移动两个12.1.0.2的cdb集群,一个在aix上,一个在linux上,不幸的是,它们都是混合型,数据有100多T. 由于其它部门交付的时候,已 ...

  4. 在python中安装basemap

    在python中安装basemap 1. 确保python环境安装完毕且已配置好环境变量 2. 安装geos: pip install geos 3. 下载.whl文件: (1)pyproj‑1.9. ...

  5. Hadoop(6)-HDFS的shell操作

    1.基本语法 使用 hadoop fs 具体命令   或者   hdfs dfs 具体命令 hadoop命令的shell源码 hdfs命令的shell源码 由此可见,这两个命令最后都是执行的一个jav ...

  6. 中国农产品信息网站scrapy-redis分布式爬取数据

    ---恢复内容开始--- 基于scrapy_redis和mongodb的分布式爬虫 项目需求: 1:自动抓取每一个农产品的详细数据 2:对抓取的数据进行存储 第一步: 创建scrapy项目 创建爬虫文 ...

  7. C# 隐藏窗口标题栏、隐藏任务栏图标

    //没有标题 this.FormBorderStyle = FormBorderStyle.None; //任务栏不显示 this.ShowInTaskbar = false;

  8. R语言学习笔记(三):零碎知识点(1-10)

    1--c() c表示"连接"(concatenate). 在R中向量是连续存储的,因此不能插入或删除元素. 2--seq() seq()的特殊用法,可以用在for循环里for(i ...

  9. R语言学习笔记(一):mode, class, typeof的区别

    要了解这三个函数的区别,先了解numeric, double与integer. 在r中浮点数有两个名字叫numeric与double. double是指它的类型(type)名字,numeric是指它的 ...

  10. UVa Problem 100 The 3n+1 problem (3n+1 问题)

    参考:https://blog.csdn.net/metaphysis/article/details/6431937 #include <iostream> #include <c ...