Rabbit Kingdom

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3360    Accepted Submission(s): 1135

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4777

Problem Description

  Long
long ago, there was an ancient rabbit kingdom in the forest. Every
rabbit in this kingdom was not cute but totally pugnacious, so the
kingdom was in chaos in season and out of season.
  n rabbits were
numbered form 1 to n. All rabbits' weight is an integer. For some
unknown reason, two rabbits would fight each other if and only if their
weight is NOT co-prime.
  Now the king had arranged the n rabbits in a
line ordered by their numbers. The king planned to send some rabbits
into prison. He wanted to know that, if he sent all rabbits between the
i-th one and the j-th one(including the i-th one and the j-th one) into
prison, how many rabbits in the prison would not fight with others.
  Please note that a rabbit would not fight with himself.
 

Input

  The input consists of several test cases.
  The first line of each test case contains two integer n, m, indicating the number of rabbits and the queries.
  The following line contains n integers, and the i-th integer Wi indicates the weight of the i-th rabbit.
  Then
m lines follow. Each line represents a query. It contains two integers L
and R, meaning the king wanted to ask about the situation that if he
sent all rabbits from the L-th one to the R-th one into prison.
  (1 <= n, m, Wi <= 200000, 1 <= L <= R <= n)
  The input ends with n = 0 and m = 0.
 

Output

  For every query, output one line indicating the answer.
 

Sample Input

3 2
2 1 4
1 2
1 3
6 4
3 6 1 2 5 3
1 3
4 6
4 4
2 6
0 0

Sample Output

2
1
1
3
1
2

Hint

  In the second case, the answer of the 4-th query is 2, because only 1 and 5 is co-prime with other numbers in the interval [2,6] .

 

Source

 

题意

给你一个区间,然后求每个区间内与其他数都互质的数有多少个。
 

题解

树链剖分专题中乱入一道树状数组的题目,然后就开始想啊想啊,最终放弃思考,瞥了一眼题解,想起了HH的项链,然后觉得相似,就做啊做啊,最后发现有不可弥补的漏洞,继续看题解,原来和我想法差那么远呀。
 
不知道大家有没有遇见过这样一道题;一个序列,每个位置i都有一个依赖位置Y[i],且i和Y[i]互相依赖(即i依赖Y[i],则Y[i]依赖i),现给你任意多个区间(l,r),求有多少点依赖点也在这个区间里。
如果没做过没关系,因为我接下来会将两题连续细细道来。
可以先不看橙字部分。。。

 

开始正经讲题解啦 :
  第一步也是关键的一步,想不到就没办法:就是求每个位置i,前面第一个与它不互质的数的位置L[i],以及后面第一个不互质数的位置R[i]。至于这个怎么求,等下再讲。
  有了这个数组之后,问题转化为求一个区间(l,r)内L[i]和R[i]都不在这个区间的数有多少个。
  如果这么想,每个位置i会有两个影响值,就不好做了,那么我们反过来求有多少i是不合法的。 不合法的个数=L[i]>=l的个数+R[i]<=r的个数-l<=L[i]&&R[i]<=r的个数。
  然后我们将所有询问区间按照右端点从小到大排序,保证扫描时右端点ll递增。
 
为了不那么抽象,我还是先讲做法再讲原理吧:
  一开始ll设为0,表示没有一个位置被更新。 每个询问区间我们定义为(li,ri)
 
  1.依次枚举询问区间把未更新的区间(即ll+1 ~ ri) 依次更新,对于每个位置j(ll+1<=j<=ri),来说这样枚举的一个非常重要的性质:剩下的询问区间r[i]>=j(即如果这个区间包含l[j]那么一定包含j)
  2.这样我们是不是把l[j]加上1即可(我称这种模型为点对贡献模型,也就是橙色字体的那题)当然要是r[j]<=ri,l[j]就没有用了,这时我们对于j,枚举所有r[x]==j的点,令x位置+1,l[x]位置-1,(即区间包含x,一定包含r[x],且包含l[x]也不会对x有影响)
  3.统计答案直接求sum(li,ri),即li到ri的和。
 
这样题目就算做完了,这种题目第一次做感觉很晕,建议研究一下:
1.为什要保证右端点单增
2.怎样统计点对答案
3.可不可以换成左端点单增
 
还有最后一个东西,那就算怎么求l[i]和r[i]呢?我们可以求出每个数的质因子,然后用一个last数组存每个质因子上一次在哪里出现,对于每个点i,枚举所有它的质因子zj,l[i]=max(l[i],last[zj]),r[i]同理。
 

代码:

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 200050
const int maxn=;
int n,m,P_num;
int prime[N],f[N],last[N],ans[N],c[N];
int L[N],R[N];
vector<int> V[N];
struct Query
{
int l,r,id;
bool operator <(const Query&b)const
{return r<b.r;}
}que[N];
template<typename T>void read(T&x)
{
ll k=; char c=getchar();
x=;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit();
while(isdigit(c))x=x*+c-'',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void update(int x,int tt){while(x<=maxn){c[x]+=tt;x+=x&-x;}}
int query(int x){int ans=;while(x){ans+=c[x];x-=x&-x;}return ans;}
void init()
{
for(int i=;i<=maxn;i++)
{
if (f[i]==)
{
prime[++P_num]=i;
int k=i;
while(k+i<=maxn)f[k+i]=,k+=i;
}
}
}
void add(int i,int zs)
{
R[last[zs]]=min(R[last[zs]],i);
L[i]=max(L[i],last[zs]);
last[zs]=i;
}
void work()
{
read(n); read(m);
if (n==)exit();
for(int i=;i<=n;i++)
{
int x;
L[i]=; R[i]=n+;
read(x);
for(int j=;j<=P_num&&x>&&f[x]==;j++)
if (x%prime[j]==)
{
add(i,prime[j]);
while(x%prime[j]==)x/=prime[j];
}
if (x>)add(i,x);
}
for(int i=;i<=n;i++) V[R[i]].push_back(i);
for(int i=;i<=m;i++)
{
read(que[i].l); read(que[i].r);
que[i].id=i;
}
sort(que+,que+m+);
int r=;
for(int i=;i<=m;i++)
{
for(int j=r+;j<=que[i].r;j++)
{
if (L[j])update(L[j],);
for(int k=;k<V[j].size();k++)
{
if (L[V[j][k]])update(L[V[j][k]],-);
update(V[j][k],);
}
}
r=que[i].r;
ans[que[i].id]=que[i].r-que[i].l+;
ans[que[i].id]-=query(que[i].r)-query(que[i].l-);
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
}
void clear()
{
for(int i=;i<=maxn;i++)V[i].clear();
memset(last,,sizeof(last));
memset(c,,sizeof(c));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
init();
while()
{
clear();
work();
}
}
 

P - 区间与其他数互质数的个数 HDU - 4777的更多相关文章

  1. 区间求小于等于k的数字个数 hdu4177

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 题目意思给出一个序列,叫我们求一个区间里面小于等于k的数字个数. 这里面我用分块和主席树两种方法 ...

  2. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  3. AC日记——数1的个数 openjudge 1.5 40

    40:数1的个数 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个十进制正整数n,写下从1到n的所有整数,然后数一下其中出现的数字“1”的个数. 例如当n=2时,写下1,2. ...

  4. 数对的个数(cogs610)

    Description出题是一件痛苦的事情!题目看多了也有审美疲劳,于是我舍弃了大家所熟悉的A+B Problem,改用A-B了哈哈! 好吧,题目是这样的:给出一串数以及一个数字C,要求计算出所有A- ...

  5. sum_series() 求一列数的指定个数的数和(5个数字的和)

    #include <stdio.h> #include <stdarg.h> /*用sum_series() 求一列数的指定个数的数和(5个数字的和)*/ double sum ...

  6. SELECT INTO和INSERT INTO SELECT的区别 类似aaa?a=1&b=2&c=3&d=4,如何将问号以后的数据变为键值对 C# 获取一定区间的随即数 0、1两个值除随机数以外的取值方法(0、1两个值被取值的概率相等) C# MD5 加密,解密 C#中DataTable删除多条数据

    SELECT INTO和INSERT INTO SELECT的区别   数据库中的数据复制备份 SELECT INTO: 形式: SELECT value1,value2,value3 INTO Ta ...

  7. hdu 5062 单峰数(12321)的个数

    http://acm.hdu.edu.cn/showproblem.php?pid=5062 模拟筛出对称单峰数(12321)的个数,水题 #include <cstdio> #inclu ...

  8. POJ3180(有向图强连通分量结点数>=2的个数)

    The Cow Prom Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1451   Accepted: 922 Descr ...

  9. cogs 610. 数对的个数

    610. 数对的个数 ★★   输入文件:dec.in   输出文件:dec.out   简单对比时间限制:1 s   内存限制:128 MB Description出题是一件痛苦的事情!题目看多了也 ...

随机推荐

  1. Java-Runoob:Java 修饰符

    ylbtech-Java-Runoob:Java 修饰符 1.返回顶部 1. Java 修饰符 Java语言提供了很多修饰符,主要分为以下两类: 访问修饰符 非访问修饰符 修饰符用来定义类.方法或者变 ...

  2. selenium自动化浏览器后台运行headless模式

    通过selenium做WEB自动化的时候,必须要启动浏览器, 浏览器的启动与关闭会影响执行效率. 当我们在自己电脑运行代码时,还会影响做别的事情. 鉴于这种情况,Google针对Chrome浏览器新增 ...

  3. 开启vmotion,实现虚拟机可以在线迁移的选项

    先决条件: 1.vcenter5.5 2.vmotion服务开启 3.分布式交换机已经部署完毕 4.虚拟机在线迁移必须在web管理下,在vclient不可以

  4. Rest之路 - Rest架构中的重要概念(二)

    状态无关性 Rest 架构中不维持client,resource and request 的状态,我们通常称 Rest 服务是状态无关的.基于此的优势是为设计Rest架构提供了简便:每一个请求可以被完 ...

  5. linux下dmesg命令详解

    前言:     有时候想查看一下开机启动信息,可以通过这个命令查询. 1,命令格式 功能说明:显示开机信息.  语 法:dmesg [-cn][-s <缓冲区大小>]  补充说明:kern ...

  6. msf上MS-2017-010(Eternalblue)的复现

    目标主机:192.168.220.148,系统为Microsoft Windows Server 2008 R2 Datacenter,开启了445端口 开启msf root@sch01ar:~# m ...

  7. 如何查看路由器中的pppoe拨号密码?

    1 2 3 4 5 6 分步阅读 有时候把宽带的账号密码给忘了,进路由器的拨号页面看了一下,账号能看到,就密码是以“*”号形式显示的,没法用“肉眼”识别出来,怎么办呢?难道真的非得打电话问运营商不可? ...

  8. python并发之multiprocessing

    由于GIL(全局解释锁)的问题,python多线程并不能充分利用多核处理器.如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.multiprocessing可以给每个进程赋 ...

  9. C#读写EXCEL(二) ZedGraph在Asp.net中的应用

      C#读写EXCEL(二) 2010-08-25 14:50:42|  分类: 默认分类 |  标签: |举报 |字号大中小 订阅 用微信  “扫一扫” 将文章分享到朋友圈. 用易信  “扫一扫” ...

  10. [原创]Spring boot 框架构建jsp web应用

    说明 Spring boot支持将web项目打包成一个可执行的jar包,内嵌tomcat服务器,独立部署 为支持jsp,则必须将项目打包为war包 pom.xml中设置打包方式 <packagi ...