先附源码:

package java.util;
import java.io.*; /**
* This class implements a hash table, which maps keys to values. Any
* non-<code>null</code> object can be used as a key or as a value. <p>
*
* To successfully store and retrieve objects from a hashtable, the
* objects used as keys must implement the <code>hashCode</code>
* method and the <code>equals</code> method. <p>
*
* An instance of <code>Hashtable</code> has two parameters that affect its
* performance: <i>initial capacity</i> and <i>load factor</i>. The
* <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
* <i>initial capacity</i> is simply the capacity at the time the hash table
* is created. Note that the hash table is <i>open</i>: in the case of a "hash
* collision", a single bucket stores multiple entries, which must be searched
* sequentially. The <i>load factor</i> is a measure of how full the hash
* table is allowed to get before its capacity is automatically increased.
* The initial capacity and load factor parameters are merely hints to
* the implementation. The exact details as to when and whether the rehash
* method is invoked are implementation-dependent.<p>
*
* Generally, the default load factor (.75) offers a good tradeoff between
* time and space costs. Higher values decrease the space overhead but
* increase the time cost to look up an entry (which is reflected in most
* <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
*
* The initial capacity controls a tradeoff between wasted space and the
* need for <code>rehash</code> operations, which are time-consuming.
* No <code>rehash</code> operations will <i>ever</i> occur if the initial
* capacity is greater than the maximum number of entries the
* <tt>Hashtable</tt> will contain divided by its load factor. However,
* setting the initial capacity too high can waste space.<p>
*
* If many entries are to be made into a <code>Hashtable</code>,
* creating it with a sufficiently large capacity may allow the
* entries to be inserted more efficiently than letting it perform
* automatic rehashing as needed to grow the table. <p>
*
* This example creates a hashtable of numbers. It uses the names of
* the numbers as keys:
* <pre> {@code
* Hashtable<String, Integer> numbers
* = new Hashtable<String, Integer>();
* numbers.put("one", 1);
* numbers.put("two", 2);
* numbers.put("three", 3);}</pre>
*
* <p>To retrieve a number, use the following code:
* <pre> {@code
* Integer n = numbers.get("two");
* if (n != null) {
* System.out.println("two = " + n);
* }}</pre>
*
* <p>The iterators returned by the <tt>iterator</tt> method of the collections
* returned by all of this class's "collection view methods" are
* <em>fail-fast</em>: if the Hashtable is structurally modified at any time
* after the iterator is created, in any way except through the iterator's own
* <tt>remove</tt> method, the iterator will throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the future.
* The Enumerations returned by Hashtable's keys and elements methods are
* <em>not</em> fail-fast.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>As of the Java 2 platform v1.2, this class was retrofitted to
* implement the {@link Map} interface, making it a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
*
* Java Collections Framework</a>. Unlike the new collection
* implementations, {@code Hashtable} is synchronized. If a
* thread-safe implementation is not needed, it is recommended to use
* {@link HashMap} in place of {@code Hashtable}. If a thread-safe
* highly-concurrent implementation is desired, then it is recommended
* to use {@link java.util.concurrent.ConcurrentHashMap} in place of
* {@code Hashtable}.
*
* @author Arthur van Hoff
* @author Josh Bloch
* @author Neal Gafter
* @see Object#equals(java.lang.Object)
* @see Object#hashCode()
* @see Hashtable#rehash()
* @see Collection
* @see Map
* @see HashMap
* @see TreeMap
* @since JDK1.0
*/
public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable { /**
* The hash table data.
*/
private transient Entry<K,V>[] table; /**
* The total number of entries in the hash table.
*/
private transient int count; /**
* The table is rehashed when its size exceeds this threshold. (The
* value of this field is (int)(capacity * loadFactor).)
*
* @serial
*/
private int threshold; /**
* The load factor for the hashtable.
*
* @serial
*/
private float loadFactor; /**
* The number of times this Hashtable has been structurally modified
* Structural modifications are those that change the number of entries in
* the Hashtable or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the Hashtable fail-fast. (See ConcurrentModificationException).
*/
private transient int modCount = 0; /** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = 1421746759512286392L; /**
* The default threshold of map capacity above which alternative hashing is
* used for String keys. Alternative hashing reduces the incidence of
* collisions due to weak hash code calculation for String keys.
* <p>
* This value may be overridden by defining the system property
* {@code jdk.map.althashing.threshold}. A property value of {@code 1}
* forces alternative hashing to be used at all times whereas
* {@code -1} value ensures that alternative hashing is never used.
*/
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE; /**
* holds values which can't be initialized until after VM is booted.
*/
private static class Holder { /**
* Table capacity above which to switch to use alternative hashing.
*/
static final int ALTERNATIVE_HASHING_THRESHOLD; static {
String altThreshold = java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
"jdk.map.althashing.threshold")); int threshold;
try {
threshold = (null != altThreshold)
? Integer.parseInt(altThreshold)
: ALTERNATIVE_HASHING_THRESHOLD_DEFAULT; // disable alternative hashing if -1
if (threshold == -1) {
threshold = Integer.MAX_VALUE;
} if (threshold < 0) {
throw new IllegalArgumentException("value must be positive integer.");
}
} catch(IllegalArgumentException failed) {
throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
} ALTERNATIVE_HASHING_THRESHOLD = threshold;
}
} /**
* A randomizing value associated with this instance that is applied to
* hash code of keys to make hash collisions harder to find.
*/
transient int hashSeed; /**
* Initialize the hashing mask value.
*/
final boolean initHashSeedAsNeeded(int capacity) {
boolean currentAltHashing = hashSeed != 0;
boolean useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean switching = currentAltHashing ^ useAltHashing;
if (switching) {
hashSeed = useAltHashing
? sun.misc.Hashing.randomHashSeed(this)
: 0;
}
return switching;
} private int hash(Object k) {
// hashSeed will be zero if alternative hashing is disabled.
return hashSeed ^ k.hashCode();
} /**
* Constructs a new, empty hashtable with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hashtable.
* @param loadFactor the load factor of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
initHashSeedAsNeeded(initialCapacity);
} /**
* Constructs a new, empty hashtable with the specified initial capacity
* and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero.
*/
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
} /**
* Constructs a new, empty hashtable with a default initial capacity (11)
* and load factor (0.75).
*/
public Hashtable() {
this(11, 0.75f);
} /**
* Constructs a new hashtable with the same mappings as the given
* Map. The hashtable is created with an initial capacity sufficient to
* hold the mappings in the given Map and a default load factor (0.75).
*
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
putAll(t);
} /**
* Returns the number of keys in this hashtable.
*
* @return the number of keys in this hashtable.
*/
public synchronized int size() {
return count;
} /**
* Tests if this hashtable maps no keys to values.
*
* @return <code>true</code> if this hashtable maps no keys to values;
* <code>false</code> otherwise.
*/
public synchronized boolean isEmpty() {
return count == 0;
} /**
* Returns an enumeration of the keys in this hashtable.
*
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public synchronized Enumeration<K> keys() {
return this.<K>getEnumeration(KEYS);
} /**
* Returns an enumeration of the values in this hashtable.
* Use the Enumeration methods on the returned object to fetch the elements
* sequentially.
*
* @return an enumeration of the values in this hashtable.
* @see java.util.Enumeration
* @see #keys()
* @see #values()
* @see Map
*/
public synchronized Enumeration<V> elements() {
return this.<V>getEnumeration(VALUES);
} /**
* Tests if some key maps into the specified value in this hashtable.
* This operation is more expensive than the {@link #containsKey
* containsKey} method.
*
* <p>Note that this method is identical in functionality to
* {@link #containsValue containsValue}, (which is part of the
* {@link Map} interface in the collections framework).
*
* @param value a value to search for
* @return <code>true</code> if and only if some key maps to the
* <code>value</code> argument in this hashtable as
* determined by the <tt>equals</tt> method;
* <code>false</code> otherwise.
* @exception NullPointerException if the value is <code>null</code>
*/
public synchronized boolean contains(Object value) {
if (value == null) {
throw new NullPointerException();
} Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
} /**
* Returns true if this hashtable maps one or more keys to this value.
*
* <p>Note that this method is identical in functionality to {@link
* #contains contains} (which predates the {@link Map} interface).
*
* @param value value whose presence in this hashtable is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the value is <code>null</code>
* @since 1.2
*/
public boolean containsValue(Object value) {
return contains(value);
} /**
* Tests if the specified object is a key in this hashtable.
*
* @param key possible key
* @return <code>true</code> if and only if the specified object
* is a key in this hashtable, as determined by the
* <tt>equals</tt> method; <code>false</code> otherwise.
* @throws NullPointerException if the key is <code>null</code>
* @see #contains(Object)
*/
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
} /**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key.equals(k))},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @param key the key whose associated value is to be returned
* @return the value to which the specified key is mapped, or
* {@code null} if this map contains no mapping for the key
* @throws NullPointerException if the specified key is null
* @see #put(Object, Object)
*/
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return e.value;
}
}
return null;
} /**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /**
* Increases the capacity of and internally reorganizes this
* hashtable, in order to accommodate and access its entries more
* efficiently. This method is called automatically when the
* number of keys in the hashtable exceeds this hashtable's capacity
* and load factor.
*/
protected void rehash() {
int oldCapacity = table.length;
Entry<K,V>[] oldMap = table; // overflow-conscious code
int newCapacity = (oldCapacity << 1) + 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<K,V>[] newMap = new Entry[newCapacity]; modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
boolean rehash = initHashSeedAsNeeded(newCapacity); table = newMap; for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next; if (rehash) {
e.hash = hash(e.key);
}
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = newMap[index];
newMap[index] = e;
}
}
} /**
* Maps the specified <code>key</code> to the specified
* <code>value</code> in this hashtable. Neither the key nor the
* value can be <code>null</code>. <p>
*
* The value can be retrieved by calling the <code>get</code> method
* with a key that is equal to the original key.
*
* @param key the hashtable key
* @param value the value
* @return the previous value of the specified key in this hashtable,
* or <code>null</code> if it did not have one
* @exception NullPointerException if the key or value is
* <code>null</code>
* @see Object#equals(Object)
* @see #get(Object)
*/
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
} // Makes sure the key is not already in the hashtable.
Entry tab[] = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.value;
e.value = value;
return old;
}
} modCount++;
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash(); tab = table;
hash = hash(key);
index = (hash & 0x7FFFFFFF) % tab.length;
} // Creates the new entry.
Entry<K,V> e = tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
return null;
} /**
* Removes the key (and its corresponding value) from this
* hashtable. This method does nothing if the key is not in the hashtable.
*
* @param key the key that needs to be removed
* @return the value to which the key had been mapped in this hashtable,
* or <code>null</code> if the key did not have a mapping
* @throws NullPointerException if the key is <code>null</code>
*/
public synchronized V remove(Object key) {
Entry tab[] = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
} /**
* Copies all of the mappings from the specified map to this hashtable.
* These mappings will replace any mappings that this hashtable had for any
* of the keys currently in the specified map.
*
* @param t mappings to be stored in this map
* @throws NullPointerException if the specified map is null
* @since 1.2
*/
public synchronized void putAll(Map<? extends K, ? extends V> t) {
for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
} /**
* Clears this hashtable so that it contains no keys.
*/
public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
} /**
* Creates a shallow copy of this hashtable. All the structure of the
* hashtable itself is copied, but the keys and values are not cloned.
* This is a relatively expensive operation.
*
* @return a clone of the hashtable
*/
public synchronized Object clone() {
try {
Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
t.table = new Entry[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry<K,V>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
} /**
* Returns a string representation of this <tt>Hashtable</tt> object
* in the form of a set of entries, enclosed in braces and separated
* by the ASCII characters "<tt>, </tt>" (comma and space). Each
* entry is rendered as the key, an equals sign <tt>=</tt>, and the
* associated element, where the <tt>toString</tt> method is used to
* convert the key and element to strings.
*
* @return a string representation of this hashtable
*/
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}"; StringBuilder sb = new StringBuilder();
Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append('{');
for (int i = 0; ; i++) {
Map.Entry<K,V> e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString()); if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
} private <T> Enumeration<T> getEnumeration(int type) {
if (count == 0) {
return Collections.emptyEnumeration();
} else {
return new Enumerator<>(type, false);
}
} private <T> Iterator<T> getIterator(int type) {
if (count == 0) {
return Collections.emptyIterator();
} else {
return new Enumerator<>(type, true);
}
} // Views /**
* Each of these fields are initialized to contain an instance of the
* appropriate view the first time this view is requested. The views are
* stateless, so there's no reason to create more than one of each.
*/
private transient volatile Set<K> keySet = null;
private transient volatile Set<Map.Entry<K,V>> entrySet = null;
private transient volatile Collection<V> values = null; /**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
* operations.
*
* @since 1.2
*/
public Set<K> keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
} private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
} /**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation, or through the
* <tt>setValue</tt> operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
* <tt>clear</tt> operations. It does not support the
* <tt>add</tt> or <tt>addAll</tt> operations.
*
* @since 1.2
*/
public Set<Map.Entry<K,V>> entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
} private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return getIterator(ENTRIES);
} public boolean add(Map.Entry<K,V> o) {
return super.add(o);
} public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry)o;
Object key = entry.getKey();
Entry[] tab = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
} public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
K key = entry.getKey();
Entry[] tab = table;
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next; count--;
e.value = null;
return true;
}
}
return false;
} public int size() {
return count;
} public void clear() {
Hashtable.this.clear();
}
} /**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own <tt>remove</tt> operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*
* @since 1.2
*/
public Collection<V> values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
} private class ValueCollection extends AbstractCollection<V> {
public Iterator<V> iterator() {
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
} // Comparison and hashing /**
* Compares the specified Object with this Map for equality,
* as per the definition in the Map interface.
*
* @param o object to be compared for equality with this hashtable
* @return true if the specified Object is equal to this Map
* @see Map#equals(Object)
* @since 1.2
*/
public synchronized boolean equals(Object o) {
if (o == this)
return true; if (!(o instanceof Map))
return false;
Map<K,V> t = (Map<K,V>) o;
if (t.size() != size())
return false; try {
Iterator<Map.Entry<K,V>> i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry<K,V> e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key)==null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
} return true;
} /**
* Returns the hash code value for this Map as per the definition in the
* Map interface.
*
* @see Map#hashCode()
* @since 1.2
*/
public synchronized int hashCode() {
/*
* This code detects the recursion caused by computing the hash code
* of a self-referential hash table and prevents the stack overflow
* that would otherwise result. This allows certain 1.1-era
* applets with self-referential hash tables to work. This code
* abuses the loadFactor field to do double-duty as a hashCode
* in progress flag, so as not to worsen the space performance.
* A negative load factor indicates that hash code computation is
* in progress.
*/
int h = 0;
if (count == 0 || loadFactor < 0)
return h; // Returns zero loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry[] tab = table;
for (Entry<K,V> entry : tab)
while (entry != null) {
h += entry.hashCode();
entry = entry.next;
}
loadFactor = -loadFactor; // Mark hashCode computation complete return h;
} /**
* Save the state of the Hashtable to a stream (i.e., serialize it).
*
* @serialData The <i>capacity</i> of the Hashtable (the length of the
* bucket array) is emitted (int), followed by the
* <i>size</i> of the Hashtable (the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping represented by the Hashtable
* The key-value mappings are emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
Entry<K, V> entryStack = null; synchronized (this) {
// Write out the length, threshold, loadfactor
s.defaultWriteObject(); // Write out length, count of elements
s.writeInt(table.length);
s.writeInt(count); // Stack copies of the entries in the table
for (int index = 0; index < table.length; index++) {
Entry<K,V> entry = table[index]; while (entry != null) {
entryStack =
new Entry<>(0, entry.key, entry.value, entryStack);
entry = entry.next;
}
}
} // Write out the key/value objects from the stacked entries
while (entryStack != null) {
s.writeObject(entryStack.key);
s.writeObject(entryStack.value);
entryStack = entryStack.next;
}
} /**
* Reconstitute the Hashtable from a stream (i.e., deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the length, threshold, and loadfactor
s.defaultReadObject(); // Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt(); // Compute new size with a bit of room 5% to grow but
// no larger than the original size. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length > elements && (length & 1) == 0)
length--;
if (origlength > 0 && length > origlength)
length = origlength; Entry<K,V>[] newTable = new Entry[length];
threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
count = 0;
initHashSeedAsNeeded(length); // Read the number of elements and then all the key/value objects
for (; elements > 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(newTable, key, value);
}
this.table = newTable;
} /**
* The put method used by readObject. This is provided because put
* is overridable and should not be called in readObject since the
* subclass will not yet be initialized.
*
* <p>This differs from the regular put method in several ways. No
* checking for rehashing is necessary since the number of elements
* initially in the table is known. The modCount is not incremented
* because we are creating a new instance. Also, no return value
* is needed.
*/
private void reconstitutionPut(Entry<K,V>[] tab, K key, V value)
throws StreamCorruptedException
{
if (value == null) {
throw new java.io.StreamCorruptedException();
}
// Makes sure the key is not already in the hashtable.
// This should not happen in deserialized version.
int hash = hash(key);
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
throw new java.io.StreamCorruptedException();
}
}
// Creates the new entry.
Entry<K,V> e = tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
} /**
* Hashtable bucket collision list entry
*/
private static class Entry<K,V> implements Map.Entry<K,V> {
int hash;
final K key;
V value;
Entry<K,V> next; protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} protected Object clone() {
return new Entry<>(hash, key, value,
(next==null ? null : (Entry<K,V>) next.clone()));
} // Map.Entry Ops public K getKey() {
return key;
} public V getValue() {
return value;
} public V setValue(V value) {
if (value == null)
throw new NullPointerException(); V oldValue = this.value;
this.value = value;
return oldValue;
} public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry)o; return key.equals(e.getKey()) && value.equals(e.getValue());
} public int hashCode() {
return (Objects.hashCode(key) ^ Objects.hashCode(value));
} public String toString() {
return key.toString()+"="+value.toString();
}
} // Types of Enumerations/Iterations
private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2; /**
* A hashtable enumerator class. This class implements both the
* Enumeration and Iterator interfaces, but individual instances
* can be created with the Iterator methods disabled. This is necessary
* to avoid unintentionally increasing the capabilities granted a user
* by passing an Enumeration.
*/
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
Entry[] table = Hashtable.this.table;
int index = table.length;
Entry<K,V> entry = null;
Entry<K,V> lastReturned = null;
int type; /**
* Indicates whether this Enumerator is serving as an Iterator
* or an Enumeration. (true -> Iterator).
*/
boolean iterator; /**
* The modCount value that the iterator believes that the backing
* Hashtable should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
} public boolean hasMoreElements() {
Entry<K,V> e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
} public T nextElement() {
Entry<K,V> et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<K,V> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
} // Iterator methods
public boolean hasNext() {
return hasMoreElements();
} public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
} public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException(); synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
}

  

Hashtable和HashMap都是通过维持一个Entry数组链表实现减值映射的。

图片复制于:http://blog.csdn.net/eaglex/article/details/6305997

但是二者有所不同:

1. 父类不同

Hashtable继承了Dictionary抽象类;HashMap继承了AbstractMao类。

Hashtable通过synchronized关键字,实现方法的线程安全。

问题:

1. 为什么使用int index = (hash & 0x7FFFFFFF) % tab.length;而不是直接用hash% tab.length?

答:hash值可以是负数,那么-1%10=-1,Entry数组会发生越界。而0X7FFFFFFF的二进制是0111 1111 1111 1111 1111 1111 1111 1111,通过&操作,可以把hash值

的最高位清0,避免越界。

参考:Why does Java use (hash & 0x7FFFFFFF) % tab.length to decide the index of a key?

Java Hashtable的实现的更多相关文章

  1. java hashtable

    java hashtable Hashtables提供了一个很有用的方法可以使应用程序的性能达到最佳. Hashtables(哈希表)在计算机领域中已不 是一个新概念了.它们是用来加快计算机的处理速度 ...

  2. Java Hashtable类

    哈希表(Hashtable)是原来的java.util中的一部分,是一个字典的具体实现. 然而,Java2重新设计的哈希表,以便它也实现了​​Map接口.因此,哈希表现已集成到集合框架.它类似于Has ...

  3. Java hashtable和hastmap的区别

    1. 继承和实现区别 Hashtable是基于陈旧的Dictionary类,完成了Map接口:HashMap是Java 1.2引进的Map接口的一个实现(HashMap继承于AbstractMap,A ...

  4. [Java] Hashtable 源码简要分析

    Hashtable /HashMap / LinkedHashMap 概述 * Hashtable比较早,是线程安全的哈希映射表.内部采用Entry[]数组,每个Entry均可作为链表的头,用来解决冲 ...

  5. Java - HashTable源码分析

    java提高篇(二五)-----HashTable 在java中与有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,valu ...

  6. Java Hashtable详细介绍和使用示例

    ①对Hashtable有个整体认识 和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射.Hashtable 继承于Dictionary,实现了Ma ...

  7. Java Hashtable 源码(JDK8)

    记录了HashMap也来看看Hashtable吧,最近打算换份实习,所以想看看书回顾一下,不然就快记不得了.....囧啊囧啊,记性太差怎么破??? Hashtable里面的一些变量: Entry< ...

  8. Java Hashtable遍历与方法使用

    参考文档 我参考了Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例,阅读了jdk 1.8的源码 Hashtable的继承关系 Hashtable继承了Dictionary类, ...

  9. Java - HashTable、HashMap和LinkedHashMap的区别

    一般情况下,我们用的最多的是HashMap,在Map 中插入.删除和定位元素,HashMap 是最好的选择.但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好.如果需要输出的顺序和输入的 ...

随机推荐

  1. HTTP状态码

    http状态码负责表示客户端HTTP请求的返回结果.标记服务器端的处理是否正常.通知出现的错误等工作. 状态码类别分组如下: 1. 1XX: informational(信息性状态码)  接收的请求正 ...

  2. 时间同步ntp服务的安装与配置(作为客户端的配置

    在linux环境下,我们不仅可以自己设置时间,也可以对系统进行时间的同步,比如同步时间到某台物理机上或虚拟机,皆可!接下来我们就以同步时间到某台物理机为例, 一起学习学习. 1.配置本地yum源(挂载 ...

  3. web项目中各种路径的获取

    以工程名为/DemoWeb为例: 访问的jsp为:http://localhost:8080/DemoWeb/test/index.jsp 1 JSP中获得当前应用的相对路径和绝对路径 (1)得到工程 ...

  4. struts2笔记

    Struts2 中, HTML 表单将被直接映射到一个 POJO,通过params拦截器,类中定义对应属性,及对应set方法即可. Struts2 中,任何一个POJO都可以是一个action类. S ...

  5. 定时器setInterval 开始、暂停、继续!

    活不多说,最近写这个定时器,,遇到了一些问题.然后上网百度.避免以后朋友遇到类似问题.贴出代码.... 最主要就是定义全局变量. 下面重要的我红色 标注出来. 批注:如 赋值代码,请给出源码地址.O( ...

  6. 文件描述符、文件表项指针、inode节点的关系

    内核使用3种数据结构表示打开的文件,他们之间的关系决定了在文件共享方面一个进程对另一个进程的影响. (1) 每个进程在进程表中都有一个纪录项,纪录项中包含一张打开文件描述符表,每个文件描述符各占一项, ...

  7. Java Web技术之Cookie

    Cookie:它是服务器在获取到用户的请求之后,把用户的请求中的重要资源保存在这个对象中,在给用户响应的时候,把这个对象发给客户端.然后浏览器接收到这个Cookie之后,浏览器会自动的把Cookie中 ...

  8. 创建Hello World程序(part-1)

    写在前面: 2006年,刚上大学,班上有几个计算机文盲,1分钟打二十几个字都困难,很不幸,我就是其中的一个.强烈的自尊心驱使我不停恶补,翻遍了图书馆的计算机文化基础,知耻而后勇...后来,C语言居然考 ...

  9. 用代码控制鼠标键盘(C#语言)

    前些时间想做一个鼠标点击器,用到了这些知识. 下面整理记录一下. ps.感谢各位大神 下面直接上代码 1.鼠标的控制 class MouseMove { #region MouseEvent [Sys ...

  10. Codeforces #380 Subordinates(贪心 构造)

    从前往后扫,找到一出现次数为0的数,从后面找一个出现不为0的数转化而来.设置两指针l, r来处理. #include<cstdio> #include<iostream> #i ...