嘟嘟嘟

一道树形dp题。

令dp[u]表示以u为根时所有点的深度之和。考虑u到他的一个子节点v时答案的变化,v子树以外的点的深度都加1,v子树以内的点的深度都减1,所以dp[v] = dp[u] + (n - siz[v]) - siz[v]。于是dp式就搞出来了。

所以两边dfs,第一遍求siz和dp[1],第二遍更新答案。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1e6 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = ans * + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, ans = ;
struct Edge
{
int nxt, to;
}e[maxn << ];
int head[maxn], ecnt = ;
void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
} int siz[maxn], dep[maxn];
ll dp[maxn];
void dfs1(int now, int f)
{
siz[now] = ;
for(int i = head[now]; i; i = e[i].nxt)
{
if(e[i].to == f) continue;
dep[e[i].to] = dep[now] + ;
dp[] += dep[e[i].to];
dfs1(e[i].to, now);
siz[now] += siz[e[i].to];
} }
void dfs2(int now, int f)
{
for(int i = head[now]; i; i = e[i].nxt)
{
if(e[i].to == f) continue;
dp[e[i].to] = dp[now] + n - (siz[e[i].to] << );
if(dp[e[i].to] > dp[ans]) ans = e[i].to;
dfs2(e[i].to, now);
}
} int main()
{
n = read();
for(int i = ; i < n; ++i)
{
int x = read(), y = read();
addEdge(x, y); addEdge(y, x);
}
dfs1(, ); dfs2(, );
write(ans); enter;
return ;
}

[POI2008]STA-Station的更多相关文章

  1. BZOJ 1131: [POI2008]Sta( dfs )

    对于一棵树, 考虑root的答案向它的孩子转移, 应该是 ans[son] = (ans[root] - size[son]) + (n - size[son]). so , 先 dfs 预处理一下, ...

  2. 1131: [POI2008]Sta

    1131: [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 783  Solved: 235[Submit][Status] ...

  3. BZOJ1131 POI2008 Sta 【树形DP】

    BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...

  4. bzoj 1131 [POI2008]Sta 树形dp 转移根模板题

    [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1889  Solved: 729[Submit][Status][Discu ...

  5. [POI2008]Sta(树形dp)

    [POI2008]Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面 ...

  6. [BZOJ1131][POI2008] Sta 树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  7. bzoj千题计划151:bzoj1131: [POI2008]Sta

    http://www.lydsy.com/JudgeOnline/problem.php?id=1131 dp[i]=dp[fa[i]]-son[i]+n-son[i] #include<cst ...

  8. [BZOJ1131/POI2008]Sta树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  9. BZOJ 1131: [POI2008]Sta

    Description 一棵树,问以那个节点为根时根的总和最大. Sol DFS+树形DP. 第一遍统计一下 size 和 d. 第二遍转移根,统计答案就行了. Code /************* ...

  10. bzoj1131: [POI2008]Sta

    思路:首先先求出以1为根的答案,然后考虑由i转移到i的儿子的答案的变化,显然以son[i]为根的子树的所有结点的深度都会减一,其余的点的深度都会加一,然后就可以直接O(n)求出所有结点的答案,然后取m ...

随机推荐

  1. java String类型转 java.sql.time类型

    String[] timePhase = reservationRuleInDTO.getTimePhase().split(",");List<ReservationTim ...

  2. 在CentOS 7上搭建私有Docker仓库

    Hub IP:10.0.2.6 操作系统:CentOS 7 64位 Docker版本:1.12.5Client IP:10.0.2.4 操作系统:CentOS 7 64位 Docker版本:1.12. ...

  3. vue中src下的assets文件与static文件的几点区别

    区别一: assets文件时src下的,所以最后运行时需要进行打包:而static文件不需要打包就直接放在最终的文件中了. 区别二: assets中的文件在.vue中的template/style下用 ...

  4. IE Error: '__doPostBack' is undefined 问题解决

    突然遇到个很奇怪的BUG,翻页控件,其他浏览器一切正常,IE无法翻页,会提示 '__doPostBack' is undefined 后来搜索发现: [原文發表地址] Bug and Fix: ASP ...

  5. TOJ 2119 Tangled in Cables

    描述 You are the owner of SmallCableCo and have purchased the franchise rights for a small town. Unfor ...

  6. Django 入门项目案例开发(上)

    关注微信公众号:FocusBI 查看更多文章:加QQ群:808774277 获取学习资料和一起探讨问题. Django 入门案例开发(中) http://www.cnblogs.com/focusBI ...

  7. 【SoapUI】http接口测试

    一.接口介绍 API(Application Programming Interface,应用程序编程接口) 1.硬件接口 USB接口 硬盘接口 SD卡接口 LAN口和WAN口 CONSOLE口 .. ...

  8. 运算符重载关键字operator

    operator关键字用来重载内置运算符,使用方法如下: public class OperatorController : Controller { // // GET: /Operator/ pu ...

  9. python unix时间戳

    这是第一次用着python感到怒了,从datetime转化到timestamp数值居然没有直接的函数 直接获取当前时间戳倒是方便: import time timestamp = time.time( ...

  10. scss-@media

    首先回顾下css3中的@media 定义和使用: 使用 @media 查询,你可以针对不同的媒体类型定义不同的样式. @media 可以针对不同的屏幕尺寸设置不同的样式,特别是如果你需要设置设计响应式 ...