任意门:http://codeforces.com/contest/1073/problem/C

C. Vasya and Robot

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:

  • U — move from (x,y) to (x,y+1)
  • D — move from (x,y)to (x,y−1)
  • L — move from (x,y)to (x−1,y)
  • R — move from (x,y) to (x+1,y)

Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).

Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxID−minID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 22, 55 and 77 are changed, so the length of changed subsegment is 7−2+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.

If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can't insert new operations into the sequence or remove them.

Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it's impossible.

Input

The first line contains one integer number n (1≤n≤2⋅105)n (1≤n≤2⋅105) — the number of operations.

The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.

The third line contains two integers x,y (−109≤x,y≤109)x,y (−109≤x,y≤109) — the coordinates of the cell where the robot should end its path.

Output

Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print −1−1.

Examples
input

Copy
5
RURUU
-2 3
output

Copy
3
input

Copy
4
RULR
1 1
output

Copy
0
input

Copy
3
UUU
100 100
output

Copy
-1
Note

In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 3−1+1=33−1+1=3.

In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.

In the third example the robot can't end his path in the cell (x,y)(x,y).

题意概括:

输入N个操作,询问修操作是否能到达终点,如果能到达终点输出“修改的区间”;

修改区间的定义:修改的最大坐标操作的坐标 - 修改的最小坐标操作的坐标

【规定起点为 (0,0),输入终点( x, y );】

操作(上下左右):

    • U — move from (x,y) to (x,y+1)
    • D — move from (x,y)to (x,y−1)
    • L — move from (x,y)to (x−1,y)
    • R — move from (x,y) to (x+1,y)

解题思路:二分 || 尺取

预处理路径前缀和(压缩路径)sum_x [ ],sum_y[ ] ;则sum_x[ N ] , sum_y[ N ] 为实际的终点;

输入的终点为 (ex, ey),假设能修改若干个操作到达输入的终点,那么:

某一段 [ st, ed ] 所走的影响为:

              X轴方向:xx = ex - ( sum_x[ N ] - sum_x[ ed -1 ] + sum_x[ st - 1 ] )

              Y轴方向:yy = ey - ( sum_y[ N ] - sum_y[ ed - 1 ] + sum_y[ st - 1 ] )

二分

二分修改区间长度 len ,尺取判断在该长度是否满足修改条件;

①操作所走最大范围不得超过 len ,因为每次操作只是上下左右移动一步

②判断能否完成假设的影响  len - abs(xx) - abs(yy))%2 ?= 0;

 abs(xx)表示的是 x 方向 到达终点 ex 的差值

 abs(yy)表示的是 y 方向 到达终点 ey 的差值

 假如 len > abs(xx)+abs(yy) 说明这段区间有操作是多余的,但是只要剩下的操作数是偶数就可以两两抵消。

尺取:

直接定义一个头指针一个尾指针,暴力一遍,条件判断是要头指针加还是尾指针加,记录最小修改区间。

AC code:

 #include<bits/stdc++.h>
using namespace std;
const int N=1e6+;
int x[N],y[N];
int sx,sy,n;
char s[N];
bool check(int m)
{
for(int i=;i<=n-m+;i++)
{
int tx=x[n]-x[i+m-]+x[i-]; //当前原来选项造成的横坐标影响
int ty=y[n]-y[i+m-]+y[i-]; //当前原来选项造成的纵坐标影响
int ex=sx-tx, ey=sy-ty; //消除当前影响
printf("%d %d m: %d\n",ex,ey,m);
if(m>=(abs(ex)+abs(ey)) && (m-abs(ex)-abs(ey))%==) //可以构造
return ;
}
return ;
}
int main()
{
//string s;
while(~scanf("%d",&n))
{
scanf("%s",s+);
x[]=y[]=;
for(int i=;i<=n;i++)
{
x[i]=x[i-];y[i]=y[i-]; //累积前面步数的结果 if(s[i]=='L') x[i]-=; //当前步数造成的影响
else if(s[i]=='R') x[i]+=;
else if(s[i]=='D') y[i]-=;
else y[i]+=;
}
// printf("%d %d\n",x[n],y[n]);
scanf("%d %d",&sx,&sy); //终点
// printf("HH");
int l=,r=n,ans=-;
while(l<=r) //二分答案
{
printf("l:%d r:%d\n", l, r);
int mid=(l+r)>>;
if(check(mid)) ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
}
}

Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】的更多相关文章

  1. Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分

    题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...

  2. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot

    题意:给出一段操作序列 和目的地 问修改(只可以更改 不可以删除或添加)该序列使得最后到达终点时  所进行的修改代价最小是多少 其中代价的定义是  终点序号-起点序号-1 思路:因为代价是终点序号减去 ...

  3. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot(二分或者尺取)

    题目哦 题意:给出一个序列,序列有四个字母组成,U:y+1,D:y-1 , L:x-1 , R:x+1;   这是规则 . 给出(x,y) 问可不可以经过最小的变化这个序列可以由(0,0) 变到(x, ...

  4. Educational Codeforces Round 53 (Rated for Div. 2) (前五题题解)

    这场比赛没有打,后来补了一下,第五题数位dp好不容易才搞出来(我太菜啊). 比赛传送门:http://codeforces.com/contest/1073 A. Diverse Substring ...

  5. Educational Codeforces Round 53 (Rated for Div. 2)

    http://codeforces.com/contest/1073 A. Diverse Substring #include <bits/stdc++.h> using namespa ...

  6. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum (数位dp求和)

    题目链接:https://codeforces.com/contest/1073/problem/E 题目大意:给定一个区间[l,r],需要求出区间[l,r]内符合数位上的不同数字个数不超过k个的数的 ...

  7. [codeforces][Educational Codeforces Round 53 (Rated for Div. 2)D. Berland Fair]

    http://codeforces.com/problemset/problem/1073/D 题目大意:有n个物品(n<2e5)围成一个圈,你有t(t<1e18)元,每次经过物品i,如果 ...

  8. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum

    https://codeforces.com/contest/1073/problem/E 题意 求出l到r之间的符合要求的数之和,结果取模998244353 要求:组成数的数位所用的数字种类不超过k ...

  9. Educational Codeforces Round 53 (Rated for Div. 2)G. Yet Another LCP Problem

    题意:给串s,每次询问k个数a,l个数b,问a和b作为后缀的lcp的综合 题解:和bzoj3879类似,反向sam日神仙...lcp就是fail树上的lca.把点抠出来建虚树,然后在上面dp即可.(感 ...

随机推荐

  1. Linux 后台运行程序 和切换至前台

    fg 将后台中的命令调至前台继续运行 jobs查看当前有多少在后台运行的命令 ctrl + z可以将一个正在前台执行的命令放到后台,并且暂停

  2. Python-2.7 配置 tab 自动补全功能

    作者博文地址:http://www.cnblogs.com/liu-shuai/ 之前一直使用shell编程,习惯了shell的 tab 自动补全功能,而Python的命令行却不支持 tab 自动补全 ...

  3. node之Express框架

    Express是node的框架,通过Express我们快速搭建一个完整的网站,而不再只是前端了!所以Express还是非常值得学习的! express有各种中间件,我们可以在官方网站查询其用法. Ex ...

  4. 常用Redis命令

    在 Windows 下配置 Redis 集群 在 Windows 下配置多个 Redis(简化配置) MicrosoftArchive/redis 官方Redis集群搭建文档 Redis命令 Cent ...

  5. Android中的ListView点击时的背景颜色设置

    想设置listview中每行在点击.选中等不同状态下有不同的背景颜色,或者背景图片. 这可以用Android的Selector来实现.它可以定义组件在不同状态下的显示方式. 新建一个xml文件list ...

  6. 6个Unity 开源项目分享!

    http://gad.qq.com/article/detail/38279?sessionUserType=BFT.PARAMS.249034.TASKID&ADUIN=991655778& ...

  7. SQL动态配置,动态解析SQL

    在项目中使用SQL动态配置的方式可以让后期的维护和发布后的修改变得更加方便,无论使用那种配置方式都离不开解析成最终真正能执行的SQL.下面代码就是一种比较简单的处理方法,SQL的参数以##括起来. 1 ...

  8. js实现选中当前元素并改变颜色(js、jq的各种循环)

    1.jq伪类选择器(:not)的使用 2.js jq运用数组循环 3.checkbox的选中循环事件 4.select的选中事件 <select class="ssss" o ...

  9. Java进程内缓存

    今天和同事聊到了缓存,在Java中实现进程缓存.这里主要思想是,用一个map做缓存.缓存有个生存时间,过期就删除缓存.这里可以考虑两种删除策略,一种是起一个线程,定期删除过期的key.第二个是,剔除模 ...

  10. Required Integer parameter 'XXX' is not present

    1.异常提示: DEBUG o.s.w.s.m.m.a.ServletInvocableHandlerMethod - Error resolving argument [2] [type=java. ...